光学专业攻读博士学位研究生培养方案
2015-07-05 来源:辽宁师范大学 作者:admin
光学专业

攻读博士学位研究生培养方案

一、培养目标
坚持德、智、体全面发展的方针,具有良好的道德品质和科研作风,具有合作精神和创新精神,能积极为社会主义现代化建设事业服务。
掌握本学科坚实宽广的基础理论、系统深入的专业知识、相应的技能和方法,具有独立从事本学科创造性科学研究工作和实际工作的能力。
掌握一门外国语,能比较熟练地阅读本专业外文资料。
二、专业及研究方向
1. 研究方向
代码
研究方向名称
简要说明
01
稀土离子光谱
稀土掺杂发光材料制备、发光机理和应用
02
 
 
03
 
 
04
 
 
 
 
三、学制与学习年限
全日制博士研究生攻读博士学位,学习年限脱产学习学制为3年;在职攻读学制为4年。
四、培养方式
博士生的培养以科学研究为主。重点培养独立从事科研工作的能力。并根据培养方案的要求,学位论文工作需要及个人的特点适当安排学习若干课程。在拓宽基础、加深专业知识、了解前沿动态的基础上掌握开拓性、创造性科学研究工作方法,培养并树立严谨的科学作风,提高学术水平。
博士生的培养实行导师负责和博士生指导小组集体指导相结合的方式。博士生导师可根据课题需要聘请相关学科的教授和中青年学术骨干组成指导小组,充分发挥其在博士生培养工作中的群体作用,为博士生创造良好的学术环境。特别注重博士生独立工作、团队精神和创新能力的培养。培养出适合国家经济建设和科技发展的高科技人才。指导小组主要协助导师进行以下工作:1、制定博士生培养计划,并督促检查实施情况;2、对博士生进行政治思想、学风、品德等方面的教育;3、指导和检查博士生的课程学习、科学研究和学位论文工作。
五、课程设置与学分
   1.公共学位课
中国马克思主义与当代,2学分,36学时,第一学期开设。
马克思主义经典著作选读,1学分,18学时,第二学期开设。
第一外国语,8学分,144学时,第一、二学期开设。
   2.专业学位课,3门,3学分(合计9学分),54学时,第一、二学期开设。
   3.专业方向课,一门,2学分,36学时,第二学期开设。
   4.任意选修课,2—4学分,博士生根据自己的实际情况选修1—2门课程,其学分记入总学分 。
六、学术研讨和学术报告
博士研究生在学期间参加学术活动是培养过程中巩固基础、提高质量的必要环节。为培养研究生的学术研究能力和语言表达能力,营造良好的学术氛围,提高研究生培养质量,丰富学院学术文化生活,研究生在校期间参加各种类型的学术活动不得少于10次。研究生学术报告包括自己作专题学术报告、参加学术报告会、前沿讲座以及各种专题研讨班等。
七、中期考核
为确保博士研究生的培养质量,博士生在入学后第三学期末,进行一次中期考核。学院学位评定分委员会要对博士研究生进行一次全面考核,内容包括思想品德和治学态度、课程学习、科研和工作能力等。考核标准按学校的相关规定执行。
八、学位(毕业)论文
(一)论文开题
博士生入学后,应首先在导师的指导下明确科研方向,通过查阅文献、收集资料、进行调查研究,确定研究课题。研究课题必须具备科学性、学术性、创新性和可行性。
博士生应于第三学期内初步拟定论文题目并写出学位论文开题报告。开题报告的内容应包括:选题的研究意义、国内外现状分析;选题的研究目标、研究内容、拟解决的关键问题;拟采取的研究方法、技术路线、实验方案及其可行性研究;选题研究的创新性;计划进度、预期进展和预期成果;与本选题有关的工作积累、已有的研究工作成绩。博士学位论文的开题报告必须在本学科或相关学科范围内公开进行,由学科负责人或导师组织相关学科专家对开题报告进行论证。
(二)学位论文
博士生在导师指导下拟定工作计划,包括研究工作各内容、要求、进行方式、完成期限等。
博士学位论文完成后,首先由导师进行审阅,提出修改意见,修改后提交送审。论文答辩和审议按国家和学校相关制度执行。
九、附则

附件1
博士研究生课程设置及教学计划
学    院:物理与电子技术学院                     学科专业:光学
研究方向:A稀土离子光谱     
课程类别
课程名称
学分
学时
开课学期
考核方式
 
学位课
中国马克思主义与当代
2
36
1
考试
马克思主义经典著作选读
1
18
2
考试
外语
8
144
1、2
考试
稀土离子光谱
3
54
1
考试
晶体材料科学
3
54
1
考试
化合物半导体器件
3
54
2
考试
 
专业
研究方向课
A
发光学和发光材料
2
36
2
考试
B
 
 
 
 
 
C
 
 
 
 
 
D
 
 
 
 
 
 
 
 
 
指定选修课
稀土功能材料
2
36
2
考查
 
 
 
 
 
 
任意选修
 
学生自选
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
附件2
阅读参考书目
著作类
1.吕红亮、张玉明、张义门:《化合物半导体器件》,电子工业出版社,2009年
2.孙家跃、杜海燕、胡文祥:《固体发光材料》,化学工业出版社,2003年
3.徐叙瑢、苏勉曾:《发光学与发光材料》,化学工业出版社,2004年
4.张克从、王希敏:《非线性光学晶体材料科学》,科学出版社,2005年
5.张思远:《稀土离子的光谱学》,科学出版社,2007年
6.郑子樵、李红英:《稀土功能材料》,化学工业出版社,2003年
7.Dieke G H., Spectra and energy levels of rare earths in crystals,New York: John-Wiley & Sons, Inc., 1968
8.Hüfner S., Optical spectra of transparent rare earth compounds,New York: Academic Press, 1978
9.Wybourne B C, Spectroscopic properties of rare earths,New York John-Wiley & Sons, Inc., 1965
10.段瑞景, 柳伟, 苏少东, 等. KSrBP2O8:RE(RE=Eu2+,Tb3+,Eu3+)荧光粉的制备与发光性能研究, 中国稀土学报, 2013, 31(3): 302-307.
11.樊婷, 吕健滔. ZnWO4:Eu3+纳米棒的制备与荧光特性, 光学学报, 2013, 33(8): 0816003-4.
12.刘明, 戴世勋, 袁淑娟, 等. Pr掺杂DyFeO3体系的自旋重取向相变、晶格畸变与Raman光谱研究, 物理学报, 2013, 62(14): 147601-6.
13.李兆, 赵西成, 江元汝, 等. 白光LED用LiY(MoO4)2:RE3+(RE=Eu、Sm、Pr)荧光粉的制备与性能, 功能材料, 2014, 45(15): 13001-13005.
14.王森, 周亚洲, 戴世勋, 等. Er3+/Ce3+共掺碲铋酸盐玻璃的制备及光谱特性提高研究.物理学报. 2012, 61(10): 107802-8.
15.韦先涛, 姜桂铖, 邓楷模, 等. 稀土掺杂的光谱转换材料及其应用. 中国科学. 2012, 42(11): 1112-1123.
16.薛冰, 徐银生, 李烟塬, 等. Ag纳米颗粒增强的Ho3+/Tm3+共掺铋锗酸盐玻璃2 μm 发光研究, 物理学报, 2014, 63(10): 107802-6.
17.杨建虎, 戴世勋, 姜中宏. 稀土离子的上转换发光及研究进展, 物理学进展, 2003, 23(3): 284-298.
18.张丽, 李成仁, 明成国, 等. Er3+ :Yb3+:Tm3+共掺硼硅酸盐玻璃光致发光温度特性和能级劈裂, 高等学校化学学报, 2009, 30(7):1189-1193.
19.郑成祥, 梁利芳, 郑金菊, 等. NaLn4-x(SiO4)3F:xRE3+(Ln=La, Gd; RE=Tb, Dy, Sm, Tm)荧光材料的发光性能, 发光学报, 2013, 34(11): 1462-1468.
20.Agnesi A, Pirzio F, Tartara L, et al., 378 fs pulse generation with Nd3C:SrLaGa3O7 (Nd:SLG) disordered crystal, Laser Physics Letters, 2013, 10(9):105815-4.
21.Chalhoub E A, Semmar N, Mathias J. Photo-thermal effects induced by KrF laser in complex oxides investigated by time resolved pyrometry:Cases of Er-doped ZnO and Y2O3, Applied Surface Science, 2009, 255(10): 5561-5564.
22.Chen S L, Zhao S L, Zheng F, et al., Enhanced up-conversion luminescence of Er3+:LaOF oxyfluoride borosilicate glass ceramics, Ceramics International, 2013, 39(3): 2909-2913.
23.Chen Y C, Huang W Y, Chen T M. Enhancing the performance of photovoltaic cells by using down-converting KCaGd(PO4)2:Eu3+ phosphors, Journal of Rare Earths, 2011, 12(9): 907-910.
24.Chen Y, Wang J, Zhang X G, et al,. An intense green emitting LiSrPO4:Eu2+, Tb3+ for phosphor-converted LED, Sensors and Actuators B: Chemical, 2010, 148: 259-263.
25.Chen Y, Xu X L, Zhang G H, et al., Blue shift of optical band gap in Er-doped ZnO thin films deposited by direct current reactive magnetron sputtering technique. Physica E, 2010, 42(5): 1713-1716.
26.Dai Y L,Kang X J,Yang D M,et al., Drug delivery: platinum (IV) pro-drug conjugated NaYF4:Yb3+/Er3+ nanoparticles for targeted drug delivery and up-conversion cell imaging, Advanced Healthcare Materials, 2013, 2(4): 562-567.
27.Darwish A G A, Badr Y, El Shaarawy M, et al., Influence of the Nd3+ ions content on the FTIR and the visible up-conversion luminescence properties of nano-structure BaTiO3 prepared by sol–gel technique, Journal of Alloys and Compounds, 2010, 489(2): 451-455.
28.Dong B, Cao B S, Feng Z Q, et al., Up-conversion emissions of Er3+-Yb3+ codoped Al2O3 nanoparticles by the arc discharge synthesis method, Sci China Ser G-Phys Mech Astron, 2009, 52(7):1043-1046.
29.Dong B, Liu D P, Wang X J, et al., Optical thermometry through infrared excited green upconversion emissions in Er3+-Yb3+ codoped Al2O3, Applied Physics Letters., 2007, 90(18): 181117-3.
30.Dong B, Wang X J, Li C R, et al., Arc discharge synthesis and up-conversion emissions of Er3+ doped Al2O3 nanoparticles, Materials Letters, 2008, 62(17-18): 3171-3173.
31.Du Y P, Zhang Y W, Sun L D, et al., Efficient energy transfer in monodisperse Eu-doped ZnO nanocrystals synthesized from metal acetylacetonates in high-boiling solvents, Journal of Physical Chemistry C, 2008, 112(32): 12234- 12241.
32.Eduardo Y,Pablo M,José L P, et al., Spontaneous emission and nonlinear response enhancement by silver nanoparticles in a Nd3+-doped periodically poled LiNbO3 laser crystal, Advanced Materials, 2013, 25(6): 910-915.
33.González L J B, Nunes L A O, Bianchi G S, et al., Near-infrared quantum cutting in OHfree Nd3+-Yb3+co-doped low-silica calcium aluminosilicate glasses, Journal of Applied Physics, 2013,114, 013103-5.
34.Gouveia N A S, da Silva A F, Bueno L A, et al., Luminescent features of sol–gel derived rare-earth multi-doped oxyfluoride nano-structured phosphors for white LED application, Journal of Luminescence, 2012, 132: 299-304.
35.Guan Y, Tsuboi T J, Huang Y L, et al., Broadband infrared emission of Pr3+-doped BaGd2(MoO4)4 for optical amplifier, Journal of Applied Physics, 2014, 115: 213104-6.
36.Hoppe U, Wyckoff N P, Brow R K, et al., Structure of ultraphosphate glasses with small rare-earth ions by X-ray diffraction, Journal of Non-Crystalline Solids, 2011, 357(14): 2516-2521.
37.Ivan G N S, Jiang K, Maria C F C, et al., White emission phosphors based on Dy3+-doped into anhydrous rare-earth benzenetricarboxylate complexes, Optical Materials, 2013, 35(5): 978-982.
38.Iwan S, Bambang S, Zhao J L, et al., Green electroluminescence from an n-ZnO:Er/p-Si heterostructured light-emitting diode, Physica B, 2012, 407(14): 2721-2724.
39.Jang Y R, Yoo K H, Ahn J S, et al., 1.54μm emission mechanism of Er-doped zinc oxide thin films, Applied Surface Science, 2010, 257(7): 2822-2824.
40.Krisjanis S, Dzidra J, Anatolijs S, et al., Up-conversion luminescence dependence on structure in zirconia nanocrystals, Optical Materials, 2013, 35(3): 462-466.
41.Kusatsugu M, Kanno M, Honma T, et al., Spatially selected synthesis of LaF3 and Er3+-doped CaF2 crystals in oxyfluoride glasses by laser-induced crystallization, Journal of Solid State Chemistry, 2008, 181(5): 1176-1183.
42.Li C R, Dong B, Li S F, et al., Er3+-Yb3+ co-doped silicate glass for optical temperature sensor, Chemical Physics Letters, 2007, 443(4-6):426-429.
43.Li C R, Li S F, Dong B, et al., Intense up-conversion emissions of Yb3+/Dy3+ co-doped Al2O3 nanopowders prepared by non-aqueous sol gel method, Chinese Physics. B, 2012, 21(9): 097803-4.
44.Li C R, Li S F, Dong B, et al., Optical parameters of Yb3+:Er3+:Nd3+ co-doped borosilicate glass and their energy transfers at high temperature, Chinese Physics B, 2011, 20(1): 017803-8.
45.Li C R, Li S F, Dong B, et al., Significant temperature effects on up-conversion emissions of Nd3+:Er3+:Yb3+ co-doped borosilicate glass and its thermometric application, Sensors and Actuators B-Chemica,. 2008, 134(8): 313-316.
46.Liang L L, Liu Y M, Bu C H, et al., Highly uniform, bifunctional core/double-shell-structured β-NaYF4:Er3+, Yb3+@SiO2@TiO2 hexagonal sub- microprisms for high-performance dye sensitized solar cells, Advanced Materials, 2013, 25(15): 2174-2180.
47.Liu Y S, Luo W Q, Li R F, et al., Spectroscopic evidence of the multiple-site structure of Eu3+ ions incorporated in ZnO nanocrystals, Optics Letters, 2007, 32(5):566-568.
48.Lojpur V, Nikolic M G, Mancic L, et al., Y2O3:Yb, Tm andY2O3:Yb, Ho powders for low-temperature thermometry basedonup-conversion fluorescence, Ceramics International, 2013, 39(2):1129-1134.
49.Meng X Q, Liu C R, Wu F M, et al., Strong up-conversion emissions in ZnO:Er3+, ZnO:Er3+-Yb3+ nanoparticles and their surface modified counterparts, Journal of Colloid and Interface Scienc,. 2011, 358(2): 334-337.
50.Mengistie L D, Duarte A, Isabel P S, et al., All-in-one optical heater- thermometer nanoplatform operative from 300 to 2000 K based on Er3+emission and blackbody radiation, Advanced Materials, 2013, 25(35):4868-4874.
51.Mezdrogina M M, Eremenko M V, Golubenko S M, et al,. Photoluminescence spectra of intracenter 4f transitions of rare-earth metal dopants in crystalline ZnO films, Physics of the solid state, 2012, 54(6):1235-1244.
52.Miguel A, Arriandiaga M A, Morea R, et al., Effect of Tm3+ codoping on the near- infrared and upconversion emissions of Er3+ in TeO2–ZnO–ZnF2 glasses, Journal of Luminescence, 2014, 154:136-141.
53.Mu H C, Tae Y M. Erbium concentration effects on the structural and photoluminescence properties of ZnO:Er films, Materials Letters, 2008, 62 (12- 13): 1835-1838.
54.Nazabal V, Poulain M, Olivier M, et al., Fluoride and oxyfluoride glasses for optical applications, Journal of Fluorine Chemistry, 2012, 134(2): 18-23.
55.Odile M, Daniel C, Arnaud Q, et al., Effect of boron oxide addition on the Nd3+ environment in a Nd-rich soda-lime aluminoborosilicate glass, Journal of Non-Crystalline Solids, 2011, 357(14): 2744-2751.
56.Pan, Aline C C N, Carlos D C D, et al., Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots, Solar Energy Materials & Solar Cells, 2010, 94(11): 1923-1926.
57.Parisi D, Veronesi S, Volpi A, et al., Spectroscopy and laser test emission in Tm3+:BaYLuF8 single crystal, Journal of Physics D, 47(2): 025101-5.
58.Pisarska J, Zur L, Goryczka T, et al., Local structure and luminescent properties of lead phosphate glasses containing rare earth ions, Journal of Rare Earths, 2011, 29(12): 1157-1160.
59.Qi J H, Wang F X, Lu F Q, et al., Optical and structural properties of Yb-doped ZnO thin waveguide films with Er3+ ions implantation, Advanced Materials Research, 2012, 465: 150-154.
60.Qi J, Yang Y H, Zhang L, et al., Room-temperature ferromagnetism in Er-doped ZnO thin films, Scripta Materialia, 2009, 60(5): 289-292.
61.Ramos J M, Alonso A S, Yanes A C, et al., Rare-earth doped YF3 nanocrystals embedded in sol–gel silica glass matrix for white light generation, Journal of Luminescence, 2010, 130(12): 2508-2511.
62.Rao T G V M, Kumar A R, Veeraiah N, et al., Optical and structural investigation of Sm3+-Nd3+ co-doped in magnesium lead borosilicate glasses, Journal of Physics and Chemistry of Solids, 2013, 74(3): 410-417.
63.Richards B D O, Fernandez T T, Jose G, et al., Mid-IR (3-4 μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide, Laser Physics Letters, 2013, 10(4):085802-5.
64.Shestakov M V, Baranov A N, Tikhomirov V K, et al., Energy-transfer luminescence of a zinc oxide/ytterbium oxide nanocomposite, RSC Advances, 2012, 23: 8783-8788.
65.Sin J C, Lam S M, Lee K T, et al,. Fabrication of erbium-doped spherical-like ZnO hierarchical nanostructures with enhanced visible light-driven photocatalytic activity, Materials Letters, 2013, 91(15): 1-4.
66.Song Q, Gao J S, Wang X Y, et al., Effect of pulse CO2 laser annealing on the crystallization of Er3+ doped Al2O3 thin film to a silica-on-silicon substrate, Optics Communications, 2007, 271(1): 137-141.
67.Song Q, Gao J S, Wang X Y, et al., Photoluminescence enhancement in Yb3+:Er3+ co-doped eutectic Al2O3:SiO2 thin films by 980nm excitation, Optics Express, 2007, 15(7):3948-3954.
68.Srivastava A M, Camardello S, Comanzo H A, et al., On the sensitization of the Pr3+ photon cascade emission by the 4fn―15d1 states of the Tm3+ and Nd3+ ions in YF3, Optical Materials, 2013, 36(2): 346-351.
69.Sun J C, Feng Q J, Dian J M, et al,. Ultraviolet electroluminescence from ZnO-based light-emitting diode with p-ZnO:N/n-GaN:Si heterojunction structure, Journal of Luminescence, 2011, 131(4): 825-828.
70.Uéslen R,Upendra K K, Carlos J, et al., Nd3+ doped LaF3 nanoparticles as self- monitored photo-thermal agents, Applied Physics Letters, 2014, 104(5): 053703-3.
71.Verma R. K, Rai S B, Continuum emission in Nd3+/Yb3+ co-doped Ca12Al14O33 phosphor: charge transfer state luminescence versus induced optical heating, Chemical Physics Letters, 2013, 559(2): 71-75.
72.Vineet K R, Anurag PRiya D. Photoluminescence study of Y2O3:Er3+-Eu3+- Yb3+ phosphor for lighting and sensing applications, Journal of Applied Physics, 2013, 113, 083104-6.
73.Wang B C, Li C R, Dong B, et al., Application to temperature sensor based on near-infrared emissions of Nd3+:Er3+:Yb3+ co-doped Al2O3, Optical Engineering, 2009, 48(10):104401-1-4.
74.Wang M T, Cheng J S. Viscosity and thermal expansion of rare earth containing soda-lime-silicate glass, Journal of Alloys and Compounds, 2010, 504(1):273- 276.
75.Wang P, Song J, Tian H, et al., Thermal stability of luminous YAG:Ce bulk ceramic as a remote phosphor prepared through silica-stabilizing valence of activator in air, Optoelectronics Letters, 2012, 8(3): 0201-0204.
76.Wei Y B, Wu Z, Jia Y M, et al., Dual-enhancement of ferro-/piezoelectric and photoluminescent performance in Pr3+ doped (K0.5Na0.5)NbO3 lead-free ceramics, Applied Physics Letters, 2014, 105:042902-3
77.Xie X J, Gao N Y, Deng R R, et al., Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles, J. Am. Chem. Soc., 2013, 135 (34): 12608-12611.
78.Xu L, Zhao H,Xu C X, et al., Optical energy storage and reemission based weak localization of light and accompanying random lasing action in disordered Nd3+doped (Pb, La)(Zr, Ti)O3 ceramics, Journal of Applied Physics, 2013, 116(6): 063104-6.
79.Xu W, Li C R, Cao B S, et al., Optical temperature sensor based on up-conversion fluorescence emission in Yb3+:Er3+ co-doped ceramics glass, Chinese Physics B, 2010, 19(12): 127804-4.
80.Yang L X, Wang X F, Li Z G, et al., (Er,Yb)-co-doped multifunctional ZnO transparent hybrid materials:fabrication, luminescent and magnetic properties, Journal of physics D, 2011, 44(15):155404-5.
81.Yang W, Dong J Z, She Y J, et al., Self-purification construction of interstitial 0 in the neighbor of Eu3+ ions to act as energy transfer bridge, Applied Physics Letters, 2014, 104(3): 033109-3.
82.Ye S, Tanabe S, Jiang N. Broadband spectral conversion due to cooperative and phonon-assistant energy transfer from ZnO to Yb3+, Applied physics B-lasers and optics, 108 (2012) 553-558.
83.Zhong Y T, Tian G, Gu Z J, et al., Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles, Advanced Materials, 2014, 26(18): 2831-2837.
84.Zhou J J, Teng Y, Qiu J R, et al., Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+-Yb3+ doped borate glasses, Chemical Physics Letters, 2010, 486(4-6): 116-118.
85.Zhou S Q, Li C R, Liu Z F, et al., Thermal effect on up- conversion in Er3+/Yb3+ co-doped silicate glass, Optical materials, 2007, 30(4):513-516.

上一篇:理论物理专业攻读博士学位研究生培养方案
下一篇:没有了