理论物理专业博士培养方案(2018)
2019-11-13 来源:辽宁师范大学 作者:admin 浏览次数:
辽宁师范大学
博士研究生培养方案修订工作审批表
 
(培养单位公章)
专业名称
理论物理
所属学院
物理与电子技术学院
导师组长
潘峰
联系人
及联系电话
黄晓理
13840862622
培养方案制定工作组成员
序号
姓名
工作单位
职务职称
本人签名
1
潘峰
辽宁师范大学
教授
 
2
岳崇兴
辽宁师范大学
副校长/教授
 
3
吴亚波
辽宁师范大学
教授
 
4
戴连荣
辽宁师范大学
教授
 
5
吕翎
辽宁师范大学
教授
 
导师组长意见:
 
 
同意该培养方案
 
签名 :                  年   月   日
学术委员会意见:
 
 
同意该培养方案
 
 
                      学术委员会主席签字:             年   月   日
 
注:培养方案上报研究生院前请完整填报本表,并签字盖章。

理论物理专业

攻读博士学位研究生培养方案

 
一、培养目标
坚持德、智、体全面发展的方针,具有良好的道德品质和科研作风,具有合作精神和创新精神,能积极为社会主义现代化建设事业服务。
掌握本学科坚实宽广的基础理论、系统深入的专业知识、相应的技能和方法,具有独立从事本学科创造性科学研究工作和实际工作的能力。
掌握一门外国语,能比较熟练地阅读本专业外文资料。
二、专业及研究方向
1. 研究方向
代码
研究方向名称
简要说明
01
核理论
在核子层次和夸克层次研究原子核的结构、反应及衰变过程。
02
新物理理论唯象研究
超出标准模型的新物理的唯象学;重味物理;中微子性质。
03
引力理论与宇宙学
引力理论、修正引力理论以及规范/引力对偶理论,宇宙的加速膨胀及其演化规律等。
04
非平衡态统计物理
系统复杂性、混沌同步以及网络动力学等。
 
三、学制与学习年限
全日制博士研究生攻读博士学位,学习年限脱产学习学制为3年;在职攻读学制为4年。因特殊原因需延长学习年限者需由本人提出书面报告,所在学院审查同意,上报研究生院审批,学习年限最长不超8
四、培养方式
博士生的培养以科学研究为主。重点培养独立从事科研工作的能力。并根据培养方案的要求,学位论文工作需要及个人的特点适当安排学习若干课程。在拓宽基础、加深专业知识、了解前沿动态的基础上掌握开拓性、创造性科学研究工作方法,培养并树立严谨的科学作风,提高学术水平。
博士生的培养实行导师负责和博士生指导小组集体指导相结合的方式。博士生导师可根据课题需要聘请相关学科的教授和中青年学术骨干组成指导小组,充分发挥其在博士生培养工作中的群体作用,为博士生创造良好的学术环境。特别注重博士生独立工作、团队精神和创新能力的培养。培养出适合国家经济建设和科技发展的高科技人才。指导小组主要协助导师进行以下工作:1、制定博士生培养计划,并督促检查实施情况;2、对博士生进行政治思想、学风、品德等方面的教育;3、指导和检查博士生的课程学习、科学研究和学位论文工作。
五、课程设置与学分
1.公共学位课
中国马克思主义与当代,2学分,32学时,第一学期开设。
马克思恩格斯列宁经典著作选读,1学分,16学时,第二学期开设。
第一外国语,8学分,128学时,第一、二学期开设。
2.专业基础课,3门,3学分(合计9学分),48学时,第一、二学期开设。
3.专业方向课,一门,2学分,32学时,第二学期开设。
4.任意选修课,2—4学分,博士生根据自己的实际情况选修1—2门课程,其学分记入总学分 。
六、学术研讨和学术报告
博士研究生在学期间参加学术活动是培养过程中巩固基础、提高质量的必要环节。为培养研究生的学术研究能力和语言表达能力,营造良好的学术氛围,提高研究生培养质量,丰富学院学术文化生活,研究生在校期间参加各种类型的学术活动不得少于10次。研究生学术报告包括自己作专题学术报告、参加学术报告会、前沿讲座以及各种专题研讨班等。
七、中期考核
为确保博士研究生的培养质量,博士生在入学后第四学期初,进行一次中期考核,各学院学位评定分委员会要对博士研究生进行一次全面考核,内容包括思想品德和治学态度、课程学习、科研和工作能力等。
八、学位(毕业)论文
(一)论文开题
博士生入学后,应首先在导师的指导下明确科研方向,通过查阅文献、收集资料、进行调查研究,确定研究课题。研究课题必须具备科学性、学术性、创新性和可行性。
博士生应于第三学期内初步拟定论文题目并写出学位论文开题报告。开题报告的内容应包括:选题的研究意义、国内外现状分析;选题的研究目标、研究内容、拟解决的关键问题;拟采取的研究方法、技术路线、实验方案及其可行性研究;选题研究的创新性;计划进度、预期进展和预期成果;与本选题有关的工作积累、已有的研究工作成绩。博士学位论文的开题报告必须在本学科或相关学科范围内公开进行,由学科负责人或导师组织相关学科专家对开题报告进行论证。
(二)学位论文
博士生在导师指导下拟定工作计划,包括研究工作各内容、要求、进行方式、完成期限等。
博士学位论文完成后,首先由导师进行审阅,提出修改意见,修改后提交送审。论文答辩和审议按国家和学校相关制度执行。
九、附则

附件1
博士研究生课程设置及教学计划
培养单位:                                学科专业:
研究方向:A                               B
课程类别
课程名称
学分
学时
开课学期
考核方式
 
学位课
中国马克思主义与当代
2
32
1
考试
马克思恩格斯列宁经典著作选读
1
16
2
考试
外语
8
128
1、2
考试
A
核结构中的群论方法
3
48
1
考试
核多体理论 (I)
3
48
1
考试
核多体理论(II)
3
48
2
考试
B
粒子物理理论
3
48
2
考试
规范场论及其应用
3
48
1
考试
高能物理唯象学
3
48
1
考试
C
广义相对论与现代宇宙学
3
48
1
考试
引力理论专题
3
48
1
考试
现代宇宙学前沿综述
3
48
2
考试
D
非平衡中的自组织
3
48
1
考试
非线性动力学
3
48
1
考试
控制理论与方法
3
48
2
考试
 
专业
研究方向课
A
核结构前沿综述
2
32
2
考试
B
对撞机物理
2
32
2
考试
C
修正引力理论
2
32
2
考试
D
网络动力学
2
32
2
考试
 
 
 
 
指定选修课
夸克核物理
2
32
3
考试
新物理理论
2
32
2
考试
天体物理专题
2
32
2
考查
复杂网络前沿综述
2
32
2
考查
 
任意选修
 
规范场的重整化
2
32
1
考查
观测宇宙学简介
2
32
2
考查
计算核物理
2
32
2
考查
程序设计与数值计算
2
32
3
考查
 
 

附件2:
 
阅读参考书目
核理论部分:
1.胡济民等:《原子核理论》,原子能出版社,1987年。
2.曾谨言、孙洪洲:《原子核结构理论》,上海科技出版社,1987年。
3. Bohr A., Mottelson B.R., Nuclear Structure Vol. I, Reading, MA: Benjamin, 1975.
4. Bohr A., Mottelson B.R., Nuclear Structure Vol. II, Reading, MA: Benjamin, 1975.
5. Ring P., Suhuck P., The Nuclear Many-Body Problem, Berlin: Springer-Verlag, 1980.
6. de-Shalit A. andTalmi I., Nuclear Shell Theory, New York: Academic Press, 1963.
7. Iachello F., Arima A., The Interacting Boson Model, Cambridge: Cambridge University, 1987.
8. Greiner W. and Maruhn J. A., Nuclear models, Berlin: Springer-Verlag, 1996.
9. Biedenharn L. C. and Louk J. D., Angular Momentum in Quantum Physics, Theory and Application, Reading, MA :Addison-Wesley, 1981. 
11. Racah G., Group theory and spectroscopy, Springer Tracts in Modern Physics, 1965, 37: 28.
12. Judd B. R., Operator Techniques in Atomic Spectroscopy, New York: McGraw-Hill, 1963.
10. Rowe D. J., A computationally tractable version of the collective model, Nucl. Phys. A, 2004, 735: 372.
13. Elliott J. P., Collective Motion in the Nuclear Shell Model. I. Classification Schemes for States of Mixed Configurations, Proc. R. Soc. London A, 1958 245: 128.
14. Elliott J.P., Collective Motion in the Nuclear Shell Model. II. The Introduction of Intrinsic Wave-Functions, Proc. R. Soc. London A, 1958, 245: 562.
15. Elliott J.P., M. Harvey, Collective Motion in the Nuclear Shell Model. III. The Calculation of Spectra, Proc. R. Soc. London A, 1963, 272: 557.
16. Cejnar P., Jolie J., and Casten R. F., Rev. Mod. Phys., 2010, 82: 2155.
17. Stephens F. S., Coriolis effects and rotation alignment in nuclei, Rev. Mod. Phys, 1975, 47: 43.
18. Heyde K. and Wood J. L., Shape coexistence in atomic nuclei, Rev. Mod. Phys., 2011, 83:1467.
19. Iachello F., Dynamic Symmetries at the Critical Point, Phys. Rev. Lett., 2000, 85: 3580.
20. Feng Pan, V. G. Gueorguiev, and J. P. Draayer, Algebraic Solutions of an Extended Pairing Model for Well Deformed Nuclei, Phys. Rev. Lett., 2004, 92: 112503.
21. Iachello F., Dynamic Supersymmetries of Differential Equations with Applications to Nuclear Spectroscopy, Phys. Rev. Lett., 2005, 95: 052503..
22. Pan F., Gueorguiev V. G., and Draayer J. P., Algebraic solutions of an extended pairing model for well deformed nuclei, Phys. Rev. Lett., 2004, 92: 112503.
23. Pan F., Xie M. X., Guan X., Dai L. R,, and Draayer J. P., New exact solutions of the standard pairing model for well-deformed nuclei, Phys. Rev. C, 2009, 80: 044306.
24. Pan F. and Draayer J. P., Simple exact solutions of one-dimensional finite-chain hard-core Bose-Hubbard and Fermi-Hubbard models, J. Phys. A: Math. Gen.,2000, 33: 9095.
25. Hara K. and Sun Y., Projected shell model and high-spin spectroscopy, Int. J. Mod. Phys. E, 1995, 4: 63.
26. Caurier E., Mart´Iez-Pinedo G., Nowacki F., Poves A., and Zuker A. P., The shell model as a unified view of nuclear structure, Rev. Mod. Phys., 2005, 77:427.
27. Caurier E., Shell model and nuclear structure, Progress in Particle and Nuclear Physics, 2007, 59: 226.
28. Carlson J. and Sciavilla R., Structure and dynamics of few-nucleon systems, Rev. Mod. Phys., 1998, 70: 743.
29. Rowe D. J. and Thiamova G., The many relationships between the IBM and the Bohr model, Nucl. Phys. A, 2005, 760: 59.
30. Thiamova G., The IBM description of triaxial nuclei. Eur. Phys. J. A, 2010, 45: 81.
31. Fortunato L., Alonso C. E., Arias J. M., Garc´ıa-Ramos J. E., and Vitturi A., Phase diagram for a cubic- interacting boson model Hamiltonian: Signs of triaxiality, Phys. Rev. C, 2011, 84: 014326.
32. Arima A. and Iachello F., Extension of the interacting boson model to odd-A nuclei. Phys.Rev. C, 1976, 14: 761-763.
33. Arima A. and Iachello F., Interacting boson model of collective nuclear states. II. The rotational limit, Ann. Phys. (NY), 1978, 111: 201-238.
34. Arima A. and Iachello F., Interacting boson model of collective nuclear states. 4. The O(6) limit, Ann. Phys. (NY), 1979, 123: 468.
35. Dieperink A. E. L., Scholten O., and Iachello F., Classical Limit of the Interacting-Boson Model, Phys. Rev. Lett. , 1980, 44: 1747.
36. Dieperink A. E. L.and Scholten O., On shapes and shape phase transitions in the interacting boson model, Nucl. Phys. A, 1980, 346: 125-138.
37. Feng D. H., Gilmore R., and Deans S. R., Phase transitions and the geometric properties of the interacting boson model, Phys. Rev. C, 1981, 23: 1254.
38. Pan F., Draayer J. P., and Luo Y., A close look at U(5)↔SU(3) transitional patterns in the interacting boson model, Phys. Lett. B, 2003, 576: 297-302.
39. Rosensteel G. and Rowe D. J., Phase transitions and quasi-dynamical symmetry in nuclear collective models, III: The U(5) to SU(3) phase transition in the IBM, Nucl. Phys. A, 2005, 759: 92-128.
40. Fossion R., Alonso C. E., Arias J. M., Fortunato L., and Vitturi A,. Shape-phase transitions and two-particle transfer intensities, Phys. Rev. C, 2007, 76: 014316.
41. Scholten O., Iachello F., and Arima A., Interacting boson model of collective nuclear states III. The transition from SU(5) to SU(3), Ann. Phys. (NY) , 1978, 115: 325-366.
42. Iachello F., Dynamic Symmetries at the Critical Point, Phys. Rev. Lett., 2000, 85: 3580.
43. Iachello F., Analytic Description of Critical Point Nuclei in a Spherical-Axially Deformed Shape Phase Transition, Phys. Rev. Lett., 2001, 87: 052502.
44. Casten R. F. and Zamfir N. V., Empirical Realization of a Critical Point Description in Atomic Nuclei, Phys. Rev. Lett., 2001, 87: 052503.
45. Van Isacker P., Dynamical Symmetry and Higher-Order Interactions, Phys. Rev. Lett., 1999, 83: 4269.
46. Thiamova G. and Cejinar P., Prolate–oblate shape-phase transition in the O(6) description of nuclear rotation, Nucl. Phys. A, 2006, 765: 97-111.
47. Dai L. R., Pan F., Liu L., Wang L. X., and Draayer J. P., Alternative characterization of the spherical to axially deformed shape-phase transition in the interacting boson model, Phys. Rev.C, 2012, 86: 034316.
48. Wu Cheng-Li, Feng Da Hsuan, Chen Xuan-Gen, Chen Jin-Quan, Guidry Michael W., Fermion dynamical symmetries and the nuclear shell model, Phys. Lett. B, 1986, 168: 313.
49. Chen Hsi-Tseng, Muhter H., and Faessler A., Pairing vibrational and isospin rotational states in a particle number and isospin projected generator coordinate method, Nucl. Phys. A, 1978, 297: 445.
50. Richardson R. W., Application to the exact theory of the pairing model to some even isotopes of Lead, Phys. Lett., 1963, 5: 82. 
51. Guan X., Launey K. D., Xie M., Bao., Pan F. and Draayer J. P., Heine-Stieltjes correspondence and the polynomial approach to the standard pairing problem. Phys. Rev. C, 2012,86: 024313.
52. Pan F., Bao L., Zhang Y.-Z., Draayer J. P., Construction of basis vectors for symmetric irreducible representations of O(5) supset O(3), Eur. Phys. J. Plus, 2014, 129: 169.
53. Pan F., Yuan S., Launey K. D., Draayer J. P., A new procedure for constructing basis vectors of SU(3) supset SO(3), Nucl. Phys. A, 2016, 952: 70.
54. Li B., Pan F., and Draayer J. P., Quantum phase transition in the spherical mean-field plus the quadrupole-quadrupole and pairing model in a single-j shell, Phys. Rev. C, 2016,93: 044312.
55. Wang Y., Pan F., Xie M., Launey K. D., and Draayer J. P., Angular momentum projection for a Nilsson mean-field plus pairing model, Nucl. Phys. A, 2016, 950: 1.
56. Guan X., Launey K. D., Wang Y., Pan F., and Draayer J. P., Ground-state properties of rare-earth nuclei in the Nilsson mean-field plus extended-pairing model, Phys. Rev. C, 2015,  92: 044303.
57. Pan F., Zhang Y., Xu H.-C., Dai L. -R., Draayer J. P., An alternative solvable description of the E(5) critical point symmetry in the interacting boson model, Phys. Rev. C, 2015, 91: 034305.
58. Zhang Y., Pan F., Dai L.-R., and Draayer J. P., Triaxial rotor in the SU(3) limit of the interacting boson model,  Phys. Rev. C, 2014, 90: 044310.
59. Guan X., Launey K. D., Xie M., Bao L., Pan F., Draayer J. P., Numerical algorithm for the standard pairing problem based on the Heine-Stieltjes correspondence and  the polynomial approach, Comp. Phys. Commun., 2014, 185: 2714.
60. Pan F., Li B., Zhang Y.-Z., and Draayer J. P., Heine-Stieltjes correspondence and a new angular momentum projection for many-particle systems, Phys. Rev. C, 2013, 88: 034305.
61. Frauendorf S., Macchiavelli A. O., Overview of neutron–proton pairing, Prog. Part. Nucl. Phys. 2014, 78: 24.
62. Dean D. J. and Hjorth-Jensen M., Pairing in nuclear systems: from neutron stars to finite nuclei, Rev. Mod. Phys., 2003, 75: 607.
63. Kota V. K. B., Castilho Alcaras J. A., Classification of states in SO (8) proton–neutron pairing model, Nucl. Phys. A, 2006, 764: 181.
64. Pan F. and Draayer J. P., Algebraic solutions of mean-field plus T= 1 pairing interaction, Phys. Rev. C, 2002, 66: 044314.
65. Dukelsky J. et al, Exact solution of the isovector neutron-proton pairing Hamiltonian, Phys. Rev. Lett., 2006, 96: 072503.
66. Lerma H. S., Errea B., Dukelsky J., and Satula W., Exact solution of the spin-isospin proton-neutron pairing Hamiltonian, Phys. Rev. Lett., 2007, 99:   032501.
67. Sandulescu N., Negrea D., Gambacurta D., Proton–neutron pairing in N= Z nuclei: Quartetting versus pair condensation, Phys. Lett. B, 2015, 751: 348.
68. Hecht K. T., Some simple R5 Wigner coefficients and their application, Nucl. Phys., 1965, 63: 177.
69. Hecht K. T., Five-dimensional quasi-spin the n, T dependence of shell-model matrix elements in the seniority scheme, Nucl. Phys., 1967, 102: 11.
70. Dean D. J., Koonin S. E., Kuo T. T. S., Langanke K., Radha P. B., Complete 0ℏω shell model Monte Carlo calculations of 94Ru, 96Pd, 96, 98Cd and 100Sn, Phys. Lett. B, 1996, 367: 17.
71. Hara K., Sun Y., Mizusaki T., Backbending mechanism of 48 Cr, Phys. Rev. Lett., 1999, 83: 1922.
72. Kaneko K., Hasegawa M., and Mizusaki T., Quadrupole and octupole softness in the N= Z nucleus 64 Ge, Phys. Rev. C, 2002, 66: 051306(R).
73. Qi C., Blomqvist J., Back T., Cederwall B., Johnson A., Liotta R. J., and Wyss R., Spin-aligned neutron-proton pair mode in atomic nuclei, Phys. Rev. C, 2011, 84: 021301(R).
74. Stoitcheva G., Satula W., Nazarewicz W., Dean D. J., Zalewski M., and  Zdunczuk H., High-spin intruder states in the fp-shell nuclei and isoscalar proton-neutron correlations, Phys. Rev. C, 2006 73: 061304(R).
75. Volya A., Zelevinsky V., Invariant correlational entropy as a signature of quantum phase transitions in nuclei, Phys. Lett. B, 2003, 574: 27.
76. Poves A., Martinez-Pinedo G., Pairing and the structure of the pf-shell N∼Z nuclei, Phys. Lett. B, 1998, 430: 203.
77. Raduta A. A. and Moya de Guerra E., Isospin and particle number projection with generalized nucleon–nucleon pairing, Ann. Phys., 2000, 284: 134.
78. Raduta A. A., Pacearescu L., Baran V., Sarriguren P., Moya de Guerra E., Semi-classical treatment of proton–neutron monopole interaction, Nucl. Phys. A, 2000, 675: 503.
79. Goodman A. L., Proton-neutron pairing in Z= N nuclei with A= 76–96, Phys. Rev. C, 1999, 60: 014311.
80. Goodman A. L., T= 0 and T= 1 pairing in rotational states of the N= Z nucleus 80Zr, Phys. Rev. C, 2001, 63: 044325.
 
粒子物理论部分:
  1. 章乃森:《粒子物理》,科学出版社,1986年。
  2. 肖振军,吕才典:《粒子物理学导论》,科学出版社,2016年。
3.戴元本:《相互作用的规范理论》,科学出版社,2005年。
4.李政道:《粒子物理和场论》,上海科学技术出版公司,2006年。
5.周邦融:《量子场论》,高等教育出版社,2007年。
6.曹昌祺:《量子非阿贝尔规范场论》,科学出版社,2008年。
7.许咨宗:《核与粒子物理导论》,中国科技大学出版社,2009年。
8.朱洪元:《量子场论》,北京大学出版社,2013年。
9.黄涛:量子色动力学引论,北京大学出版社, 2011年。
10.石康杰,杨文力,杨战营:《量子场论与重整化导论》,科学出版社,2014年。
11.Barger V., Phillips R.: Collider Physics, Addison-Wesley Publishing Company, 2007。
12. Cheng T.P., Li L.F. : Gauge theory of elementary particle physics. USA:Oxford University Press, 1984。
13. Itzykson C., Zuber J.B.: Quantum field theory. USA: McGraw-Hill Inc., 1980。
14. Field R. D.: Application of Perturbative QCD, Addison-Wesley Publishing  Company, 1989。
15.Weinberg, Steven, The Quantum Theory of Fields Vol. 2. UK:Cambridge University Press, 1996。
16.Greiner, W., Quantum Chromodynamics. Germany:Springer-Verlag Berlin and Heidelberg GmbH & Co. K, 2002。
17.Peskin, Michael E., An introduction To Quantum Field Theory. USA:Westview Press, 1995。
18.Srednicki M.:Quantum Field Theory. UK: Cambridge University Press,2007。
19.Farhi E. and Susskind L., Technicolor, Phys. Rept. 74 (1981) 277.
20.Gunion F. J., Haber  H. E., Kane G. L. and Dawson S., The Higgs Hunter’s Guide, Front. Phys. 80 (2000) 1.
21. Frampton P. H., Hung P. Q., Sher  M., Quarks and leptons beyond the third generation, Phys. Rept. 330 (2000) 263.
22. Hill C. T. and Simmons E. H., Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381(2003)235; [Erratum-ibid, 390 (2004)553].
23.Pumplin J.et al. [CTEQ Collaboration], Parton distributions and the strong coupling: CTEQ6AB PDFs, JHEP 0602 (2006) 032.
24.Larios F., Martinez R. and Perez M. A., New physics effects in the flavor-changing neutral couplings of the top quark, Int. J. Mod. Phys. A 21 (2006) 3473 [hep-ph/0605003] [INSPIRE].
25.Djouadi A., The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys.Rept.457(2008)1.
26.Gonzalez-Garcia M. C. and Maltoni M., Phenomenology with Massive Neutrinos, Phys. Rept. 460 (2008)1.
27. Xing Z. Z., Theoretical overview of neutrino properties, Int. J. Mod. Phys. A 23, 4255 (2008).
28. Langacker P., The physics of heavy Z ′Gauge Bosons, Rev. Mod. Phys. 81(2009)1199.
29. Incandela J.R., Quadt A., Wagner W. and Wicke D., Status and Prospects of Top-Quark Physics, Prog. Part. Nucl. Phys. 63 (2009) 239 [arXiv:0904.2499] [INSPIRE].
30.Williams M., Burgess C. P., Maharana A., and Quevedo F., New constraints (and motivations) for Abelian gauge bosons in the MeV-TeV mass range, JHEP 1108 (2011) 106.
31. Olive K.A. et al., [Particle Data Group], Review of Particle Physics (RPP), Chin. Phys. C 38,090001(2014).
32. Schilling F.P., Top Quark Physics at the LHC: A Review of the First Two Years, Int. J. Mod. Phys. A 27 (2012) 1230016 [arXiv:1308.0166].
33. Baer H.et al., The International Linear Collider Technical Design Report - Volume 2: Physics, arXiv:1306.6352 [INSPIRE].
34.Heinemeyer S., et al.[The LHC Higgs Cross Section Working Group Collaboration] ,Handbook of LHC Higgs cross sections: 3. Higgs properties," arXiv:1307.1347 [hep-ph].
35. Pich A., Precision tau physics, Prog. Part. Nucl. Phys. 75 (2014) 41.
36. DeGrand T, Lattice tests of beyond Standard Model dynamics, Rev.Mod.Phys. 88 (2016) 015001.
37. Aguilar-Saavedra J.A.,  Amidei D., Juste A., Perez-Victoria M., Asymmetries in top quark pair production at hadron colliders, Rev.Mod.Phys. 87 (2015) 421-455. 
38. Hurth T., Mahmoudi F., Colloquium: New physics search with flavor in the LHC era, Rev.Mod.Phys. 85 (2013) 795.
39. Bernardi G., Herndon M., Standard model Higgs boson searches through the 125 GeV boson discovery, Rev.Mod.Phys. 86 (2014) no.2, 479.
40.Formaggio J.A., Zeller G.P., From eV to EeV: Neutrino Cross Sections Across Energy Scales, Rev.Mod.Phys. 84 (2012) 1307.
41.Branco G.C., Felipe R.G., Joaquim F.R., Leptonic CP Violation, Rev.Mod.Phys. 84 (2012) 515-565.
42.Cirigliano V., Ecker G., Neufeld H., Pich A., Portoles J., Kaon Decays in the Standard Model, Rev.Mod.Phys. 84 (2012) 399.
43.Deliot F., Glenzinski D.A., Top Quark Physics at the Tevatron, Rev.Mod.Phys. 84 (2012) 211.
44.Altarelli G., Feruglio F., Discrete Flavor Symmetries and Models of Neutrino Mixing, Rev.Mod.Phys. 82 (2010) 2701-2729.
45. Ryd A., Petrov A.A., Hadronic D and D(s) Meson Decays, Rev.Mod.Phys. 84 (2012) 65-117.
46. Kobayashi M., Nobel Lecture: CP violation and flavor mixing, Rev.Mod.Phys. 81 (2009) 1019-1025.
47. Londergan J.T., Peng J.C., Thomas A.W., Charge Symmetry at the Partonic Level, Rev.Mod.Phys. 82 (2010) 2009-2052.
48. Feng J.L., Grivaz J.F., Nachtman J., Searches for Supersymmetry at High-Energy Colliders, Rev.Mod.Phys. 82 (2010) 699-727.
49. Kim J.E., Carosi G., Axions and the Strong CP Problem, Rev.Mod.Phys. 82 (2010) 557-602.
50. Browder T.E., Gershon T., Pirjol D., Soni A., Zupan J., New Physics at a Super Flavor Factory, Rev.Mod.Phys. 81 (2009) 1887-1941.
52. Avignone F.T., Elliott S.R., Engel J., Double Beta Decay, Majorana Neutrinos, and Neutrino Mass, Rev.Mod.Phys. 80 (2008) 481-516.
53.Davier M., Hocker A., Zhang Z.Q., The Physics of hadronic tau decays, Rev.Mod.Phys. 78 (2006) 1043-1109.
54.Brambilla N., Pineda A., Soto J., Vairo A., Effective field theories for heavy quarkonium, Rev.Mod.Phys. 77 (2005) 1423.
55. Bernstein R.H., Cooper P.S., Charged Lepton Flavor Violation: An Experimenter's Guide, Phys.Rept. 532 (2013) 27-64.
56.Schael S., et al., Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP, Phys.Rept. 532 (2013) 119-244.
57. Branco G.C., Ferreira P.M., Lavoura L., Rebelo M.N., Sher M., Silva J. P. , Theory and phenomenology of two-Higgs-doublet models, Phys.Rept. 516 (2012) 1-102.
58.Buckley A., et al., General-purpose event generators for LHC physics, Phys.Rept. 504 (2011) 145-233.
59. Morrissey D. E., Plehn T., Tait T.M.P., Physics searches at the LHC, Phys.Rept. 515 (2012) 1-113.
60.Ellwanger U., Hugonie C., Teixeira A.M., The Next-to-Minimal Supersymmetric Standard Model, Phys.Rept. 496 (2010) 1-77.
61. Antonelli M., et al., Flavor Physics in the Quark Sector, Phys.Rept. 494 (2010) 197-414.
62.Gonzalez-Garcia M.C., Maltoni M., Phenomenology with Massive Neutrinos, Phys.Rept. 460 (2008) 1-129.
63.Ramsey-Musolf M.J., Su S., Low Energy Precision Test of Supersymmetry, Phys.Rept. 456 (2008) 1-88.
64. Schael S., et al., Precision electroweak measurements on the  ZZ  resonance, Phys.Rept. 427 (2006) 257-454.
65.Weiglein G., et al., Physics interplay of the LHC and the ILC, Phys.Rept. 426 (2006) 47-358.
66.Yue C.X., Zhou J.R., New gauge boson Z′and lepton flavor violating decays and production of vector mesons, Phys.Rev. D93 (2016) no.3, 035021.
67.Yue C.X., Pang C., Guo Y.C., Lepton flavor violating Higgs couplings and single production of the Higgs boson via  collision, J.Phys. G42 (2015) 075003.
68.Yu Y., Yue C.X., Yang S., Signatures of the quintuplet leptons at the LHC, Phys.Rev. D91 (2015) no.9, 093003.
69.Yue C.X., Cui M.L., LFV couplings of the extra gauge boson Z′ and leptonic decay and production of pseudoscalar mesons, Nucl.Phys. B887 (2014) 371-379.
70.Yue C.X., Cao S.Y., Zeng Q.G., Light axigluon and single top production at the LHC, JHEP 1404 (2014) 170.
71.Yue C.X., Shi Q.Y., Hua T., Vector bileptons and the decays ,, Nucl.Phys. B876 (2013) 747-757.
72.Yue C.X., Liao M.Y., Yu Y., New physics models and the left–right asymmetry  in the processes   at the LHC, J.Phys. G40 (2013) 075006.
73.Yue C.X., Zeng Q.G., Shi Q.Y., Liao M.Y., Bottom partner  and  production at the LHC, Phys.Lett. B718 (2013) 1390-1394.
74.Yue C.X., Xia Y., Guo J., Yu Y., Production of the doubly charged leptons at the high-energy linear  colliders, J.Phys. G39 (2012) 065002.
75.Zeng Q.G., Yue C.X., Zhang J., Pair production of the heavy leptons associated with a gauge boson gamma or Z at the ILC, Nucl.Phys. B860 (2012) 152-166.
76.Yue C.X., Wang J., Yu Y., Zhang T.T., The anomalous top quark coupling tqg and tW production at the LHC, Phys.Lett. B705 (2011) 222-227. 
77.Ma W., Yue C.X., Zhang J., Sun Y.B., Lepton flavor violating signals of the  LHT  model via  and  collisions at the ILC, Phys.Rev. D82 (2010) 095010.
78. Yue C.X., Zhang T.T., Liu J.Y., The Scalars from the Topcolor Scenario and the Spin Correlations of the Top Pair Production at the LHC, J.Phys. G37 (2010) 075016.
79.Yue C.X., Yang H.D., Feng H.L., Lepton flavor violation production of new particles from a topcolor scenario via e gamma collision, J.Phys. G37 (2010) 015006.
80. Yue C.X., Zhang J., Liu W., Rare Decays    in the  TC2  Model and the  LHT model, Nucl.Phys. B832 (2010) 342-357.
粒子物理论部分:
  1. 章乃森:《粒子物理》,科学出版社,1986年。
  2. 肖振军,吕才典:《粒子物理学导论》,科学出版社,2016年。
3.戴元本:《相互作用的规范理论》,科学出版社,2005年。
4.李政道:《粒子物理和场论》,上海科学技术出版公司,2006年。
5.周邦融:《量子场论》,高等教育出版社,2007年。
6.曹昌祺:《量子非阿贝尔规范场论》,科学出版社,2008年。
7.许咨宗:《核与粒子物理导论》,中国科技大学出版社,2009年。
8.朱洪元:《量子场论》,北京大学出版社,2013年。
9.黄涛:量子色动力学引论,北京大学出版社, 2011年。
10.石康杰,杨文力,杨战营:《量子场论与重整化导论》,科学出版社,2014年。
11.Barger V., Phillips R.: Collider Physics, Addison-Wesley Publishing Company, 2007。
12. Cheng T.P., Li L.F. : Gauge theory of elementary particle physics. USA:Oxford University Press, 1984。
13. Itzykson C., Zuber J.B.: Quantum field theory. USA: McGraw-Hill Inc., 1980。
14. Field R. D.: Application of Perturbative QCD, Addison-Wesley Publishing  Company, 1989。
15.Weinberg, Steven, The Quantum Theory of Fields Vol. 2. UK:Cambridge University Press, 1996。
16.Greiner, W., Quantum Chromodynamics. Germany:Springer-Verlag Berlin and Heidelberg GmbH & Co. K, 2002。
17.Peskin, Michael E., An introduction To Quantum Field Theory. USA:Westview Press, 1995。
18.Srednicki M.:Quantum Field Theory. UK: Cambridge University Press,2007。
19.Farhi E. and Susskind L., Technicolor, Phys. Rept. 74 (1981) 277.
20.Gunion F. J., Haber  H. E., Kane G. L. and Dawson S., The Higgs Hunter’s Guide, Front. Phys. 80 (2000) 1.
21. Frampton P. H., Hung P. Q., Sher  M., Quarks and leptons beyond the third generation, Phys. Rept. 330 (2000) 263.
22. Hill C. T. and Simmons E. H., Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381(2003)235; [Erratum-ibid, 390 (2004)553].
23.Pumplin J.et al. [CTEQ Collaboration], Parton distributions and the strong coupling: CTEQ6AB PDFs, JHEP 0602 (2006) 032.
24.Larios F., Martinez R. and Perez M. A., New physics effects in the flavor-changing neutral couplings of the top quark, Int. J. Mod. Phys. A 21 (2006) 3473 [hep-ph/0605003] [INSPIRE].
25.Djouadi A., The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys.Rept.457(2008)1.
26.Gonzalez-Garcia M. C. and Maltoni M., Phenomenology with Massive Neutrinos, Phys. Rept. 460 (2008)1.
27. Xing Z. Z., Theoretical overview of neutrino properties, Int. J. Mod. Phys. A 23, 4255 (2008).
28. Langacker P., The physics of heavy Z ′Gauge Bosons, Rev. Mod. Phys. 81(2009)1199.
29. Incandela J.R., Quadt A., Wagner W. and Wicke D., Status and Prospects of Top-Quark Physics, Prog. Part. Nucl. Phys. 63 (2009) 239 [arXiv:0904.2499] [INSPIRE].
30.Williams M., Burgess C. P., Maharana A., and Quevedo F., New constraints (and motivations) for Abelian gauge bosons in the MeV-TeV mass range, JHEP 1108 (2011) 106.
31. Olive K.A. et al., [Particle Data Group], Review of Particle Physics (RPP), Chin. Phys. C 38,090001(2014).
32. Schilling F.P., Top Quark Physics at the LHC: A Review of the First Two Years, Int. J. Mod. Phys. A 27 (2012) 1230016 [arXiv:1308.0166].
33. Baer H.et al., The International Linear Collider Technical Design Report - Volume 2: Physics, arXiv:1306.6352 [INSPIRE].
34.Heinemeyer S., et al.[The LHC Higgs Cross Section Working Group Collaboration] ,Handbook of LHC Higgs cross sections: 3. Higgs properties," arXiv:1307.1347 [hep-ph].
35. Pich A., Precision tau physics, Prog. Part. Nucl. Phys. 75 (2014) 41.
36. DeGrand T, Lattice tests of beyond Standard Model dynamics, Rev.Mod.Phys. 88 (2016) 015001.
37. Aguilar-Saavedra J.A.,  Amidei D., Juste A., Perez-Victoria M., Asymmetries in top quark pair production at hadron colliders, Rev.Mod.Phys. 87 (2015) 421-455. 
38. Hurth T., Mahmoudi F., Colloquium: New physics search with flavor in the LHC era, Rev.Mod.Phys. 85 (2013) 795.
39. Bernardi G., Herndon M., Standard model Higgs boson searches through the 125 GeV boson discovery, Rev.Mod.Phys. 86 (2014) no.2, 479.
40.Formaggio J.A., Zeller G.P., From eV to EeV: Neutrino Cross Sections Across Energy Scales, Rev.Mod.Phys. 84 (2012) 1307.
41.Branco G.C., Felipe R.G., Joaquim F.R., Leptonic CP Violation, Rev.Mod.Phys. 84 (2012) 515-565.
42.Cirigliano V., Ecker G., Neufeld H., Pich A., Portoles J., Kaon Decays in the Standard Model, Rev.Mod.Phys. 84 (2012) 399.
43.Deliot F., Glenzinski D.A., Top Quark Physics at the Tevatron, Rev.Mod.Phys. 84 (2012) 211.
44.Altarelli G., Feruglio F., Discrete Flavor Symmetries and Models of Neutrino Mixing, Rev.Mod.Phys. 82 (2010) 2701-2729.
45. Ryd A., Petrov A.A., Hadronic D and D(s) Meson Decays, Rev.Mod.Phys. 84 (2012) 65-117.
46. Kobayashi M., Nobel Lecture: CP violation and flavor mixing, Rev.Mod.Phys. 81 (2009) 1019-1025.
47. Londergan J.T., Peng J.C., Thomas A.W., Charge Symmetry at the Partonic Level, Rev.Mod.Phys. 82 (2010) 2009-2052.
48. Feng J.L., Grivaz J.F., Nachtman J., Searches for Supersymmetry at High-Energy Colliders, Rev.Mod.Phys. 82 (2010) 699-727.
49. Kim J.E., Carosi G., Axions and the Strong CP Problem, Rev.Mod.Phys. 82 (2010) 557-602.
50. Browder T.E., Gershon T., Pirjol D., Soni A., Zupan J., New Physics at a Super Flavor Factory, Rev.Mod.Phys. 81 (2009) 1887-1941.
52. Avignone F.T., Elliott S.R., Engel J., Double Beta Decay, Majorana Neutrinos, and Neutrino Mass, Rev.Mod.Phys. 80 (2008) 481-516.
53.Davier M., Hocker A., Zhang Z.Q., The Physics of hadronic tau decays, Rev.Mod.Phys. 78 (2006) 1043-1109.
54.Brambilla N., Pineda A., Soto J., Vairo A., Effective field theories for heavy quarkonium, Rev.Mod.Phys. 77 (2005) 1423.
55. Bernstein R.H., Cooper P.S., Charged Lepton Flavor Violation: An Experimenter's Guide, Phys.Rept. 532 (2013) 27-64.
56.Schael S., et al., Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP, Phys.Rept. 532 (2013) 119-244.
57. Branco G.C., Ferreira P.M., Lavoura L., Rebelo M.N., Sher M., Silva J. P. , Theory and phenomenology of two-Higgs-doublet models, Phys.Rept. 516 (2012) 1-102.
58.Buckley A., et al., General-purpose event generators for LHC physics, Phys.Rept. 504 (2011) 145-233.
59. Morrissey D. E., Plehn T., Tait T.M.P., Physics searches at the LHC, Phys.Rept. 515 (2012) 1-113.
60.Ellwanger U., Hugonie C., Teixeira A.M., The Next-to-Minimal Supersymmetric Standard Model, Phys.Rept. 496 (2010) 1-77.
61. Antonelli M., et al., Flavor Physics in the Quark Sector, Phys.Rept. 494 (2010) 197-414.
62.Gonzalez-Garcia M.C., Maltoni M., Phenomenology with Massive Neutrinos, Phys.Rept. 460 (2008) 1-129.
63.Ramsey-Musolf M.J., Su S., Low Energy Precision Test of Supersymmetry, Phys.Rept. 456 (2008) 1-88.
64. Schael S., et al., Precision electroweak measurements on the  ZZ  resonance, Phys.Rept. 427 (2006) 257-454.
65.Weiglein G., et al., Physics interplay of the LHC and the ILC, Phys.Rept. 426 (2006) 47-358.
66.Yue C.X., Zhou J.R., New gauge boson Z′and lepton flavor violating decays and production of vector mesons, Phys.Rev. D93 (2016) no.3, 035021.
67.Yue C.X., Pang C., Guo Y.C., Lepton flavor violating Higgs couplings and single production of the Higgs boson via  collision, J.Phys. G42 (2015) 075003.
68.Yu Y., Yue C.X., Yang S., Signatures of the quintuplet leptons at the LHC, Phys.Rev. D91 (2015) no.9, 093003.
69.Yue C.X., Cui M.L., LFV couplings of the extra gauge boson Z′ and leptonic decay and production of pseudoscalar mesons, Nucl.Phys. B887 (2014) 371-379.
70.Yue C.X., Cao S.Y., Zeng Q.G., Light axigluon and single top production at the LHC, JHEP 1404 (2014) 170.
71.Yue C.X., Shi Q.Y., Hua T., Vector bileptons and the decays ,, Nucl.Phys. B876 (2013) 747-757.
72.Yue C.X., Liao M.Y., Yu Y., New physics models and the left–right asymmetry  in the processes   at the LHC, J.Phys. G40 (2013) 075006.
73.Yue C.X., Zeng Q.G., Shi Q.Y., Liao M.Y., Bottom partner  and  production at the LHC, Phys.Lett. B718 (2013) 1390-1394.
74.Yue C.X., Xia Y., Guo J., Yu Y., Production of the doubly charged leptons at the high-energy linear  colliders, J.Phys. G39 (2012) 065002.
75.Zeng Q.G., Yue C.X., Zhang J., Pair production of the heavy leptons associated with a gauge boson gamma or Z at the ILC, Nucl.Phys. B860 (2012) 152-166.
76.Yue C.X., Wang J., Yu Y., Zhang T.T., The anomalous top quark coupling tqg and tW production at the LHC, Phys.Lett. B705 (2011) 222-227. 
77.Ma W., Yue C.X., Zhang J., Sun Y.B., Lepton flavor violating signals of the  LHT  model via  and  collisions at the ILC, Phys.Rev. D82 (2010) 095010.
78. Yue C.X., Zhang T.T., Liu J.Y., The Scalars from the Topcolor Scenario and the Spin Correlations of the Top Pair Production at the LHC, J.Phys. G37 (2010) 075016.
79.Yue C.X., Yang H.D., Feng H.L., Lepton flavor violation production of new particles from a topcolor scenario via e gamma collision, J.Phys. G37 (2010) 015006.
80. Yue C.X., Zhang J., Liu W., Rare Decays    in the  TC2  Model and the  LHT model, Nucl.Phys. B832 (2010) 342-357.
 
引力论与宇宙学部分:
1须重明,吴雪君: 《广义相对论与现代宇宙学》,南京师范大学出版社,1999年。
2刘辽、 赵峥:《广义相对论(第2版)》,高等教育出版社,2004年。
3王永久:《引力论与宇宙论》,湖南师范大学出版社,2004年。
4俞允强:《物理宇宙学》,北大出版社, 2000年。
5王永久:《经典宇宙和量子宇宙》,科学出版社,2010年。
6赵峥、刘文彪:《广义相对论基础》,清华大学出版社,2010年。
7王永久:《经典黑洞与量子黑洞》,科学出版社,2008年。
8向守平,冯珑珑:《宇宙大尺度结构的形成》,中国科学技术出版社,2010年。
9赵峥:《黑洞的热性质与时空奇异性》,北京师范大学出版社,1999年。
10俞允强:《热大爆炸宇宙学》,北京大学出版社,2002年。
11. 韦伯(著),陈凤至、张大卫(译):《广义相对论与引力波》,科学出版社,1979年。
12. Carmeli M., Classical fields general relativity and gauge theory. Singapore: World Scientific Publishing Company, 1982.
13. Wald R. M., General Relativity. Chicago and London: The Univ. of Chicago Press, 1984.
14. Liddle A. R., Lyth D. H., Cosmological inflation and large-scale structure. Cambridge : Cambridge Univ. Press, 2000.
15. Kolb E. W., Turner M.S., The Early Universe. Princeton: Princeton Univ. Press, 1990.
16. Schutz B. F., Geometrical methods of mathematical physics, London: Cambridge University Press, 1980.
17. Hartle J. B., Gravity: an introduction to Einstein’s general relativity. Singapore: World Publishing Co, 2008.
18. Dodelson S., Modern Cosmology. Elsevier Pte Ltd., 2008.
19. Hawking S.W., Israel W., General Relativity: An Einstein Centenary Suevey, Cambridge: Cambridge University Press, 1979.
20. Guth A. H., Inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D 23: 347, 1981.
21. Copeland E. J., Sami M., Tsujikawa S., Dynamics of dark energy, Int. J. Mod. Phys. D 15: 1753, 2006.
22. Nojiri S., Odintsov S. D., Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models, Phys. Rept. 505: 59, 2011.
23. Carroll S. M., Duvvuri V., Trodden M., Turner M. S., Is Cosmic Speed-Up Due to New Gravitational Physics? Phys. Rev. D 70: 043528, 2004.
24. Cognola G., Elizalde E., Nojiri S., Odintsov S. D., Zerbini S., Dark energy in modified Gauss-Bonnet gravity, late-time acceleration and the hierarchy problem, Phys. Rev. D 73: 084007, 2006.
25. Herzog C. P., Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42: 343001, 2009.
26. Horowitz G. T., Introduction to Holographic Superconductors, Lect. Notes Phys. 828: 313, 2011.
27. Hartnoll S. A, Herzog C. P., Horowitz G. T., Building a Holographic Superconductor, Phys. Rev. Lett. 101: 031601, 2008.
28. Gubser S. S., Pufu S. S., The gravity dual of a p wave superconductor, JHEP 11: 033, 2008.
29. J. W. Chen, Y. J. Kao, D. Maity, W. Y. Wen, C. P. Yeh, Towards A Holographic Model of  D-Wave Superconductors, Phys. Rev. D 81: 106008, 2010.
30. Horowitz G. T., Roberts M. M., Holographic superconductors with various condensates, Phys. Rev. D78: 126008, 2008.
31. Siopsis J, Therrien J., Analytic calculation of properties of holographic superconductors, JHEP 05: 013, 2010.
32. Albash T., Johnson C. V., A Holographic Superconductor in an External Magnetic Field, JHEP 09: 121, 2008.
33. Liu Y., Pan Q., Wang B., Holographic superconductor developed in BTZ black hole background with backreactions, Phys. Lett. B 702: 94, 2011.
34. Nishioka T., Ryu S., Takayanagi T., Holographic Superconductor/Insulator Transition at Zero Temperature, JHEP 03: 131, 2010.
35. Akhavan A, Alishahiha A., P-wave holographic insulator/superconductor phase transition, Phys. Rev. D 83: 086003, 2011.
36. Cai R. G., Li H. F., Zhang H. F., Analytical studies on holographic insulator/superconductor phase transitions, Phys. Rev. D 83: 126007, 2011.
37. Li H. F., Further studies on holographic insulator/superconductor phase transitions from Sturm-Liouville eigenvalue problems, JHEP 07: 135, 2013.
38. Kachru S., Liu X., Mulligan M., Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev. D 78: 106005, 2008.
39. Iizuka N., Maeda K., Study of Anisotropic Black Branes in Asymptotically anti-de Sitter, JHEP 07: 129, 2012.
40. Koga J. i., Maeda K., Tomoda K., A holographic superconductor model in a spatially anisotropic background, Phys. Rev. D 89: 104024, 2014.
41. Brynjolfsson E. J., Danielsson U. H., Thorlacius L., Zingg T., Holographic Superconductors with Lifshitz Scaling, J. Phys. A 43: 065401, 2010.
42. Sin S. J., Xu S. S., Zhou Y., Holographic Superconductor for a Lifshitz fixed point, Int. J. Mod. Phys. A 26: 4617, 2011.
43. Bu Y., Holographic superconductors with z=2 Lifshitz scaling, Phys. Rev. D 86: 046007, 2012.
44. Lu J. W., Wu Y. B., Qian P., Zhao Y. Y., Zhang X., Lifshitz Scaling Effects on Holographic Superconductors, Nucl. Phys. B 887: 112, 2014.
45. Zhao Z., Pan Q., Jing J., Notes on analytical study of holographic superconductors with Lifshitz scaling in external magnetic field, Phys. Lett. B 735: 438, 2014.
46. Lala A., Magnetic response of holographic Lifshitz superconductors: Vortex and Droplet solutions, Phys. Lett. B 735: 396, 2014.
47. Tallarita G., Holographic Lifshitz Superconductors with an Axion Field, Phys. Rev. D 89: 106005, 2014.
48. Herzog C. P., Kovtun P. K., Son D. T., Holographic model of superfluidity, Phys. Rev. D 79: 066002, 2009.
49. Basu P., Mukherjee A., Shieh H. H., Supercurrent: Vector Hair for an AdS Black Hole, Phys. Rev. D 79: 045010, 2009.
50. Sonner J., Withers B., A gravity derivation of the Tisza-Landau Model in AdS/CFT, Phys. Rev. D 82: 026001, 2010.
51. Arean D., Bertolini M., Evslin J., Prochazka T., On Holographic Superconductors with DC Current, JHEP 07: 060, 2010.
52. Zeng H. B., Sun W. M., Zong H. S., Supercurrent in p-wave Holographic Superconductor, Phys. Rev. D 83: 046010, 2011.
53. Arean D., Basu P., Krishnan C., The Many Phases of Holographic Superfluids, JHEP 10: 006, 2010.
54. Cai R. G., He S., Li L., Li L. F., A Holographic Study on Vector Condensate Induced by a Magnetic Field, JHEP 12: 036, 2013.
55. Cai R. G., Li L., Li L. F., Wu Y., Vector Condensate and AdS Soliton Instability Induced by a Magnetic Field, JHEP 01: 045, 2014.
56. Wu Y. B., Lu J. W., Liu M. L., Lu J. B., Zhang C. Y., Yang Z. Q., Lifshitz Effects on Vector Condensate Induced by a Magnetic Field, Phys. Rev. D 89: 106006, 2014.
57. Wu Y. B., Lu J. W., Jin Y. Y., Lu J. B., Zhang X., Wu S. Y., Wang C., Magnetic-field effects on p-wave phase transition in Gauss-Bonnet gravity, Int. J. Mod. Phys. A 29: 1450094, 2014.
58. Cai R. G., Li L., Li L. F., A Holographic P-wave Superconductor Model, JHEP 01: 032, 2014.
59. Cai R. G., Li L., Li L. F., Yang R. Q., Towards Complete Phase Diagrams of a Holographic P-wave Superconductor Model, JHEP 04: 016, 2014.
60. Pan Q., Wang B., Papantonopoulos E., liveira J. O, Pavan A. B., Holographic Superconductors with various condensates in Einstein-Gauss-Bonnet gravity, Phys. Rev. D 81: 106007, 2010.
61.Cai R. G., Nie Z. Y., Zhang H. Q., Holographic Phase Transitions of P-wave   Superconductors in Gauss-Bonnet Gravity with Backreaction, Phys. Rev. D 83: 066013, 2011.
62. Li M., Li X.D., Wang S., Wang Y., Dark Energy, Commun. Theor. Phys. 56: 525-604, 2011.
63. Peebles P., Ratra B., The Cosmological Constant and Dark Energy, Rev. Mod. Phys. 75: 559-606, 2003.
64. Li M., A Model of Holographic Dark Energy, Phys. Lett. B 603: 1, 2004.
65. Cai R.G., A Dark Energy Model Characterized by the Age of the Universe, Phys. Lett. B. 657: 228, 2007.
66. Brans C., Dicke R.H., Mach’s principle and a relativistic theory of gravitation, Phys. Rev. 124: 925-935, 1961.
67. Felice A.D., Tsujikawa S., f(R) theories, Living Rev. Rel. 13: 3, 2010.
68. Sotiriou T.P., Faraoni V., f(R) Theories of Gravity, Rev. Mod. Phys. 82: 451-497, 2010.
69. Bertolami O., Boehmer C.G., Harko T., Lobo F. S. N., Extra force in f(R) modified theories of gravity, Phys. Rev. D 75: 104016, 2007.
70. Bertolami O., Lobo F.S.N., Paramos J., Nonminimal coupling of perfect fluids to curvature, Phys. Rev. D 78: 064036, 2008.
71. Harko T., Modified gravity with arbitrary coupling between matter and geometry, Phys. Lett. B 669: 376-379, 2008.
72. Eling C., Guedens R., Jacobson T., Non-equilibrium Thermodynamics of Spacetime, Phys. Rev. Lett. 96: 121301, 2006.
73. Padmanabhan T., Gravity and the thermodynamics of horizons, Phys. Rept. 406: 49-125, 2005.
74. Akbar M. and Cai R.G., Thermodynamic Behavior of Friedmann Equation at Apparent Horizon of FRW Universe, Phys.Rev.D 75: 084003, 2007.
75. Akbar M., Cai R.G., Thermodynamic Behavior of Field Equations for f(R) Gravity, Phys. Lett. B 648: 243-248, 2007.
76. Felice A.D., Tsujikawa S., Construction of cosmologically viable f(G) gravity models, Phys. Lett. B 675: 1-8, 2009.
77. Dvali G., Gabadadze G., Porrati M., 4D Gravity on a Brane in 5D Minkowski Space, Phys. Lett. B 485: 208-214,2000.
78. Horellou C., Berget J., Dark energy and evolution of spherical overdensities, Mon. Not. Roy. Astro. Soc. 360:1393-1400, 2005.
79. Nodal Y. L., Cardenas R., Quinstant dark energy predictions for structure formation, Astrophys. Space. Sci. 323:107-114, 2009
80. Koivisto T., A note on covariant conservation of energy-momentum in modified gravities, Class. Quantum Grav. 23:4289-4296, 2006.
81. Malik K.A., Wands D., Cosmological perturbations, Phys. Rept. 475:1-51, 2009.
82. Lewis. A., Bridle S., Cosmological parameters from CMB and other data: a Monte-Carlo approach, Phys. Rev. D 66: 103511, 2002.
83. Bean R., Bernat D., Pogosian L., Silvestri A., Trodden M., Dynamics of Linear Perturbation in f(R) Gravity, Phys. Rev. D 75: 064020, 2007.
84. Tsujikawa S., Matter density perturbations and effective gravitational constant in modified gravity models of dark energy, Phys. Rev. D 76: 023514, 2007.
85. Pogosian L., Silvestri A., The pattern of growth in viable f(R) cosmologies, Phys. Rev. D 77: 023503, 2008.
86. Cruz-Dombriz A. de la, Dobado A., Maroto A. L., Evolution of density perturbations in f(R) theories of gravity, Phys. Rev. D 77: 123515, 2008.
87. Bertolami O., Frazao P., Paramos J., Cosmological perturbations in theories with non-minial coupling between curvature and matter, JCAP05:029, 2009.
88. He J. H., Testing f(R) dark energy model with the large scale structure, Phys. Rev. D 86:103505, 2012.
89. Lima N.A., Liddle A.R., Linear perturbations in viable f(R) theories, Phys. Rev. D 88: 043521, 2013.
90. Tamanini N., Consistency of nonminimally coupled f(R) gravity, Phys. Rev. D 88: 064052, 2013.
91. Wang J. Wang H. Evolution of matter density perturbations in f(R) theories of gravity with non-minimal coupling between matter and geometry, Phys. Lett. B 724: 5-10, 2013.
92. Jaccard M., Maggiore M. and Mitsou E., Nonlocal theory of massive gravity, Phys. Rev. D 88:  044033, 2013.
93. Biswas T., Conroy A. , Koshelev A.S. and Mazumdar A., Generalized ghost-free quadratic curvature gravity, Class. Quant. Grav. 31:015022, 2014.
94. Cai R.G. and Yang R.Q., Holographic model for the paramagnetism/antiferromagnetism phase transition, Phys. Rev. D 91: 086001, 2015.
95. Yokoi N, Ishihara M., Sato K. and Saitoh E., Holographic realization of ferromagnets, Phys. Rev. D 93: 026002, 2016.
96. J.D.E. Creighton, W.G. Anderson, Gravitational-Waves Physics and Astronomy, Milwaukee: WILEY-VCH Verlag GmbH & Co. KGaA, 2011.
97. M. Maggiore: Gravitational Waves, New York: Oxford University Press, 2008.
98. I. Ciufolini, V. Gorini, U. Moschella, Gravitational Waves, London: Institute of Physics Publishing, 2001.
99. R.van Haasteren, Gravitational Waves Detection and Data Analysis for Pulsar Timing Arrays, Clayton: Springer, 2011.
100. S. Chandrasekhar, The Mathematical Theory of Black Holes, New York: Oxford University Press, 1992.
101. B.P. Abbott, et al. [The LIGO Scientific Collaboration, Virgo Collaboration], Observation of gravitational waves from a binary black hole merger, Physical Review Letter, 2016, 116 (6), 016102.
 
非平衡态统计物理部分:
1.方锦清:《驾驭混沌》, 原子能出版社, 2002年。
2.刘秉正:《非线性动力学》,高等教育出版社, 2004年。
3.汪小帆:《复杂网络理论与应用》, 清华大学出版社, 2006年。
4. Lewis T G. Network Science: Theory and Applications, New York: Wiley, 2009.
5. Nicolis G. Self-organization in nonequilibrium system, New York: Wiley, 1977.
6.Acebrón J A, Bonilla L L,Vicente C J P, Ritort F, Spigler R. The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys., 2005, 77(1): 137 -185.
7.Aghababa M P, Khanmohammadi S, Alizadeh G. Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Applied Mathematical Modelling, 2011, 35(6):3080-3091.
8.Aghababa M P. Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dynamics, 2012, 69(1-2):247-261.
9.Aguirre J, Sevilla-Escoboza R, Gutiérrez R, Papo D, Buldú J M. Synchronization of Interconnected Networks: The Role of Connector Nodes. Phys. Rev. Lett., 2014, 112 (24): 248701-5.
10.Atay F M, Jost J, Wende A. Delays, Connection topology, and synchronization of coupled chaotic maps. Phys. Rev. Lett., 2004, 92(14):144101-4.
11.Barabási A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286 (5439): 509-512.
12. Batista C A S, Batista A M, de Pontes J C A, Lopes S R, Viana R L. Bursting synchronization in scale-free networks. Chaos, Solitons and Fractals, 2009, 41(5): 2220-2225.
13. Belykh V N, Belykh I V, Hasler M. Connection graph stability method for synchronized coupled chaotic systems. Physica D, 2004, 195(1-2):159-187.
14.Bhowmick S K, Amritkar R E, Dana S K. Experimental evidence of synchronization of time-varying dynamical network. Chaos, 2012, 22(2):023105-9.
15.Boccaletti S, Hwang D U, Chavez M, Amann A, Kurths J, Pecora L M. Synchronization in dynamical networks: evolution along commutative graphs. Phys. Rev. E, 2006, 74(1):016102-5.
16.Buric N, Todorovie K,Vasović N. Synchronization of noisy delayed feedback systems with delayed coupling. Phys. Rev. E, 2007, 75(2):026209-10.
17.Čelikovskýa S, Lynnyka V, Chen G R. Robust synchronization of a class of chaotic networks. J. Franklin Inst., 2013, 350(10):2936-2948.
18.Checco P, Biey M, Kocarev L. Synchronization in random networks with given expected degree sequences, Chaos, Solitons and Fractals,2008,35(3):562-577.
19.Chen L, Qiu C, Huang H B. Synchronization with on-off coupling: Role of time scales in network dynamics. Phys. Rev. E, 2009, 79(4):45101-4.
20.Chen M. Synchronization in time-varying networks: A matrix measure approach. Phys. Rev. E, 2007, 76 (1):016104-10.
21.DeLellis P, diBernardo M, Garofalo F. Novel decentralized adaptive strategies for the synchronization of complex networks. Automatica, 2009, 45(5):1312-1318.
22.Donetti L, Hurtado P I, Muñoz M A. Entangled networks, synchronization, and optimal network topology. Phys. Rev. Lett., 2005, 95(18):188701-4.
23.Dörfler F, Bullo F. Synchronization in complex networks of phase oscillators: A survey. Automatica, 2014, 50(6):1539-1564.
24.Du H Y. Adaptive open-plus-closed-loop method of projective synchronization in drive-response dynamical networks. Commun. Nonlinear Sci. Numer. Simulat., 2012 17(12):3353-3359.
25.Earl M G, Strogatz S H. Synchronization in oscillator networks with delayed coupling: a stability criterion. Phys. Rev. E, 2003, 67(3):036204-4.
26.Gade P M, Hu C K. Synchronous chaos in coupled map lattices with small-world interactions. Phys. Rev. E, 2000, 62(5):6409-6413.
27.Haken H. Synchronization and pattern recognition in a pulse-coupled neural net. Physica D, 2005, 205(1-4):1-6.
28.Hung Y C, Huang Y T, Ho M C, Hu C K. Paths to globally generalized synchronization in scale-free networks. Phys. Rev. E, 2008, 77(1-2):16202-8.
29.Ji D H, Park J H, Yoo W J, Won S C, Lee S M. Synchronization criterion for Lur’e type complex dynamical networks with time-varying delay. Phys. Lett. A, 2010, 374(10):1218-1227.
30.Kalsi K, Lian J, Hui S, Żak S H. Sliding mode observers for systems with unknown input: a high-gain approach, Automatica, 2010, 46(2):347-353.
31.Khadra A, Liu X Z, Shen X. Impulsively synchronizing chaotic systems with delay and application to secure communication. Automatica, 2005, 41(9):1491-1502.
32.Kouvaris N, Provata A, Kugiumtzis D. Detecting synchronization in coupled stochastic ecosystem networks. Phys. Lett. A, 2010, 374 (4):507-515.
33.Leyva I Sendi˜na-Nadal I, Almendral J A, Navas A, Olmi S, Boccaletti S. Explosive synchronization in weighted complex networks. Phys. Rev. E, 2013, 88(4): 042808-7.
34.Li C P, Sun W G, Kurths J. Synchronization of complex dynamical networks with time delays. Physica A, 2006, 361(1):24-34.
35.Li C, Chen G R. Synchronization in general complex dynamical networks with coupling delays. Physica A, 2004, 343(3-4):263-278.
36.Li K, Lai C H. Adaptive-impulsive synchronization of uncertain complex dynamical networks. Phys. Lett. A, 2008, 372(10):1601-1606.
37.Li P, Yi Z. Synchronization analysis of delayed complex networks with time-varying couplings. Physica A, 2008, 387(14):3729-3737.
38.Liu X W, Chen T P. Exponential synchronization of nonlinear coupled dynamical networks with a delayed coupling. Physica A, 2007, 381(1):82-92.
39.Lü J H, Chen G R. A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Automat. Cont., 2005, 50(6):841- 846.
40.Lü J H, Yu X H, Chen G R, Cheng D Z. Characterizing the synchronizability of small-world dynamical networks. IEEE Transactions on circuits and systems, 2004, 51(4):787-796.
41.Lü J H, Yu X H, Chen G R. Chaos synchronization of general complex dynamical networks. Physica A, 2004,334 (1-2): 281-302.
42.Lu J Q, Ho D W C. Local and global synchronization in general complex dynamical networks with delay coupling. Chaos, Solitons and Fractals, 2008, 37(5):1497-1510.
43.Lü L, Li C R, Chen L S, Wei L L. Lag projective synchronization of a class of complex network constituted nodes with chaotic behavior. Commun. Nonlinear Sci. Numer. Simulat., 2014, 19(8):2843-2849.
44.Lü L, Li C R, Chen L S. Projective synchronization of the small world delayed network with uncertainty. Nonlinear Dynamics, 2014, 76 (2):1633-1640.
45.Lü L, Li G, Guo L, Meng L, Zou J R, Yang M. Generalized chaos synchronization of a weighted complex network with different nodes. Chin. Phys. B, 2010, 19(8): 080507-7.
46.Lü L, Li Y S, Fan X, Lü N. Outer synchronization between uncertain complex networks based on Backstepping design. Nonlinear Dynamics, 2013, 73(1):767-773.
47.Mondaln S, Mahanta C. Adaptive second order terminal sliding mode controller for robotic manipulators. J. Franklin Institute, 2014, 351(4):2356-2377.
48.Motter A E, Zhou C S, Kurths J. Network Synchronization, Diffusion, and the Paradox of Heterogeneity. Phys. Rev. E, 2005, 71(1): 016116-9.
49.Newman M E J, Watts D J. Renormalization group analysis of the small-world network model. Phys. Lett. A, 1999, 263(4-6):341-346.
50.Park J H. Synchronization of cellular neural networks of neutral type via dynamic feedback controller. Chaos, Solitons and Fractals, 2009, 42(3):1299-1304.
51.Pecora L M, Carroll T L. Master stability functions for synchronized coupled systems. Phys. Rev. Lett., 1998, 80(10):2109-2112.
53.Pisarchik A N, Jaimes-Reátegui R, Sevilla-Escoboza R, Boccaletti S. Experimental approach to the study of complex network synchronization using a single oscillator. Phys. Rev. E, 2009, 79(5): 55202-4.
53.Porfiri M, diBernardo M. Criteria for global pinning-controllability of complex networks. Automatica, 2008, 44(12):3100-3106.
54.Posadas-Castillo C, Cruz-Hernández C, López-Gutiérrez R M. Experimental realization of synchronization in complex networks with Chua’s circuits like nodes, Chaos, Solitons and Fractals, 2009,40(4):1963-1975.
55.Selivanov A A, Lehnert J, Dahms T, Hövel P, Fradkov A L, Schöll E. Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators. Phys. Rev. E, 2012, 85(1):016201-8.
56.Shang Y, Chen M Y, Kurths J. Generalized synchronization of complex networks. Phys. Rev. E, 2009, 80(2):027201-4.
57.Song Q K. Synchronization analysis in an array of asymmetric neural networks with time-varying delays and nonlinear coupling. Appl. Math. Comput., 2010, 216 (5): 1605- 1613.
58.Sun X J, Xu W, Ma S J. Period-doubling bifurcation of a double-well Duffing-van der Pol system with bounded random parameters. Acta Phys. Sin., 2006, 55(2):610- 616.
59.Szmoski R M, Pereira R F, de Souza Pinto S E. Effective dynamics for chaos synchronization in networks with time-varying topology. Nonlinear Sci. Numer. Simulat., 2013 18(6): 1491-1498.
60.Um J, Hong H, Park H. Nature of synchronization transitions in random networks of coupled oscillators. Phys. Rev. E, 2014, 89(1):012810-8.
61.Wang J W, Zhang Y B. Network synchronization in a population of star-coupled fractional nonlinear oscillators. Phys. Lett. A, 2010, 374(13-14):1464-1468.
62.Wang K, Teng Z D, Jiang H J. Global exponential synchronization in delayed reaction- diffusion cellular neural networks with the Dirichlet boundary conditions. Math. Comput. Model., 2010, 52 (1):12-24.
63.Wang Y W, Wang H O, Xiao J W, Guan Z H. Synchronization of complex dynamical networks under recoverable attacks. Automatica, 2010, 46(1):197-203.
64.Watanabe T. Rich-club network topology to minimize synchronization cost due to phase difference among frequency-synchronized oscillators. Physica A, 2013, 392 (5): 1246-1255.
65.Watts D J, Strogatz S H. Collective dynamics of "small world" networks. Nature, 1998, 393(6684):440-442.
66.Wembe E T, Yamapi R. Chaos synchronization of resistively coupled Duffing systems: Numerical and experimental investigations. Commun. Nonlinear Sci. Numer. Simul., 2009, 14(4): 1439-1453 .
67.Wu X J, Lu H T. Hybrid synchronization of the general delayed and non-delayed complex dynamical networks via pinning control. Neurocomputing, 2012, 89(3): 168-177.
68.Yan G, Zhou T, Hu B, Fu Z Q, Wang B H. Efficient routing on complex networks. Phys. Rev. E, 2006, 73(4):046108-5.
69.Yang X S, Cao J D. Hybrid adaptive and impulsive synchronization of uncertain complex networks with delays and general uncertain perturbations. Appl. Math. Comput., 2014, 227(1): 480-493.
70.Yang Z Q, Zhang Q, Chen Z Q. Adaptive linear generalized synchronization between two nonidentical networks. Commun. Nonlinear Sci. Numer. Simulat., 2012, 17(6):2628- 2636.
71.Yin C Y, Wang W X, Chen G R, Wang B H. Decoupling process for better synchronizability on scale-free networks. Phys. Rev. E, 2006, 74(4):047102-4.
72.Yu H T, Wang J, Liu Q X, Sun J B, Yu H F. Delay-induced synchronization transitions in small-world neuronal networks with hybrid synapses. Chaos, Solitons and Fractals, 2013, 48 (1): 68-74.
73.Yu W W, Chen G R, Lü J H. On pinning synchronization of complex dynamical networks. Automatica, 2009, 45(2):429-435.
74.Zhang J B, Liu Z R, Xu J H. Synchronization in oscillator networks with coupling balance. Chaos, Solitons and Fractals, 2009, 39(2):556-566.
75.Zhao L, Lai Y C, Park K, Ye N. Onset of traffic congestion in complex networks. Phys. Rev. E, 2005, 71(2):026125-8.
76.Al-mahbashi G, Noorani M S Md, Bakar S. A. Projective lag synchronization in drive-response dynamical networks with delay coupling via hybrid feedback control. Nonlinear Dyn., 2015, 82 (3):1569-1579.
77.Murguia C, Fey Rob H B, Nijmeijer H. Network synchronization using invariant- manifold-based diffusive dynamic couplings with time-delay. Automatica, 2015, 57: 34-44.
78.Lipa N, Mannes E, Santos A, Nogueira M. Firefly-inspired and robust time synchronization for cognitive radio ad hoc networks. Computer Communications, 2015, 66:36-44.
79.Abdurahman A, Jiang H J, Teng Z D. Finite-time synchronization for memristor- based neural networks with time-varying delays. Neural Networks, 2015, 69:20-28.
80. Ghaffari A, Arebi S. Pinning control for synchronization of nonlinear complex dynamical network with suboptimal SDRE controllers. Nonlinear Dyn., 2016, 83(1): 1003-1013.
81.Murguia C, Fey Rob H B, Nijmeijer H. Network synchronization using invariant- manifold-based diffusive dynamic couplings with time-delay. Automatica, 2015, 57: 34-44.
82.Sivaranjani K, Rakkiyappan R, Cao J D, Alsaedi A. Synchronization of nonlinear singularly perturbed complex networks with uncertain inner coupling via event triggered control. Appl. Math. Comput., 2017, 311:283-299.
83.Ma J, Wu F Q, Wang C N. Synchronization behaviors of coupled neurons under electromagnetic radiation. Int. J. Mod. Phys. B, 2017, 31:1650251-14.
84.Lü L, Li C R, Li G, Zhao G N. Cluster synchronization transmission of laser pattern signal in laser network with ring cavity (in Chinese). Sci. Sin.-Phys. Mech. Astron., 2017, 47:080501-10.
85.Hu J Q, Liang J L, Cao J D. Synchronization of hybrid-coupled heterogeneous networks: Pinning control and impulsive control schemes. J. Franklin Institute, 2014, 351:2600-2622.
86.Rakkiyappan R, Sakthivel N. Pinning sampled-data control for synchronization of complex networks with probabilistic time-varying delays using quadratic convex approach. Neurocomputing, 2015, 162:26-40.
87.Dharani S, Rakkiyappan R, Park J H. Pinning sampled-data synchronization of coupled inertial neural networks with reaction-diffusion terms and time-varying delays. Neurocomputing, 2017, 227:101-107.
88.Delellis P, Garofalo F, Iudice F L. The partial pinning control strategy for large complex networks. Automatica, 2018, 89:111-116.
89.Abdurahman A. New results on the general decay synchronization of delayed neural networks with general activation functions. Neurocomputing, 2018, 275:2505-2511.
90.Fan A L, Li J M. Adaptive neural network prescribed performance matrix projection synchronization for unknown complex dynamical networks with different dimensions. Neurocomputing, 2018, 281:55-66.
91.Liu D, Yang G H. Event-triggered synchronization control for complex networks with actuator saturation. Neurocomputing, 2018, 275:2209-2216.
92.Wang L L, Chen T P. Finite-time anti-synchronization of neural networks with time-varying delays. Neurocomputing, 2018, 275:1595-1600.
93.Wu X, Liu S, Yang R, Zhang Y J, Li X Y. Global synchronization of fractional complex networks with non-delayed and delayed couplings. Neurocomputing, 2018, 290:43-49.
94.Boaretto B R R, Budzinski R C, Prado T L, Kurths J, Lopes S R. Suppression of anomalous synchronization and nonstationary behavior of neural network under small-world topology. Physica A, 2018, 497:126-138.
95.Cheng L, Yang Y Q, Li L, Sui X. Finite-time hybrid projective synchronization of the drive-response complex networks with distributed-delay via adaptive intermittent control. Physica A, 2018, 500:273-286.
96.Li F F, Li J N, Shen L J. State feedback controller design for the synchronization of Boolean networks with time delays. Physica A, 2018, 490:1267-1276.
97.Li Z, Ren T, Xu Y J, Jin J Y. The relationship between synchronization and percolation for regular networks. Physica A, 2018, 492:375-381.
98.Ekaterinchuk E, Jungeilges J, Ryazanova T, Sushko I. Dynamics of a minimal consumer network with bi-directional influence. Commun. Nonlinear Sci. Numer. Simulat., 2018, 58: 107- 118.
99.Castanedo-Guerra I, Steur E, Nijmeijer H. Synchronization of “light-sensitive” Hindmarsh- Rose neurons. Commun. Nonlinear Sci. Numer. Simulat., 2018, 57:322-330.
100.Mohseni A, Gharibzadeh S, Bakouie F. The effect of network structure on desynchronization dynamics. Commun. Nonlinear Sci. Numer. Simulat., 2018, 63: 271-279.
 

上一篇:理论物理硕士培养方案(2018)
下一篇:粒子物理与原子核物理硕士研究生培养方案(2018)