理论物理硕士培养方案(2018)
2019-11-13 来源:辽宁师范大学 作者:admin 浏览次数:
辽宁师范大学
硕士研究生培养方案修订工作审批表(院级)
 
(培养单位公章)
专业名称
理论物理
培养单位
物理与电子技术学院
导师组长
潘峰
联系人
及联系电话
黄晓理
13840862622
培养方案制定工作组成员
序号
姓名
工作单位
职务职称
本人签名
1
潘峰
辽宁师范大学
教授
 
2
岳崇兴
辽宁师范大学
副校长/教授
 
3
吴亚波
辽宁师范大学
教授
 
4
吕翎
辽宁师范大学
教授
 
5
黄晓理
辽宁师范大学
副教授
 
导师组长意见:
 
同意该培养方案
 
 
签名 :                  年   月   日
学术委员会意见:
 
同意该培养方案
 
 
                      学术委员会主席签字:             年   月   日
 
注:培养方案上报研究生院前请完整填报本表,并签字盖章。

理论物理专业

攻读硕士学位研究生培养方案

一、培养目标
1.坚持德、智、体全面发展的方针,掌握马克思主义基本理论,拥护中国共产党的领导,树立科学的发展观,热爱祖国;遵纪守法,品行端正;诚实守信,学风严谨,团结协作;具有良好的科研道德和敬业精神;
2.掌握理论物理专业的基础理论及相关的专业知识,具有相对独立的从事科学研究工作的能力,具有计算机编程和数据处理的能力;
3.能比较熟练的阅读本专业的英文资料,并能用英文撰写论文摘要;
4.具有健康的体质和良好的心理素质。
坚持德、智、体全面发展,培养具有良好道德品质和科研作风,具有合作精神和创新精神,能积极为社会主义现代化建设事业服务的专门人才。要求掌握本学科坚实宽广的基础理论、系统深入的专业知识、相应的技能和方法;具有独立从事本学科创造性科学研究工作和计算机编程和数据处理的能力;至少掌握一门外语,能较熟练阅读本专业外文资料,并用外文撰写论文。
二、专业及研究方向
代码
研究方向名称
简要说明
01
量子多体理论
核多体和其它量子多体系统的计算方法和性质研究。
02
新物理理论的唯象研究
新物理模型、新粒子、高能实验数据分析等
03
原子核理论
原子核结构和反应规律、特别在大形变区和近滴线区附近的运动规律等
04
引力论与宇宙学
相对论、修正引力理论、现代宇宙学和天体物理学及其在加速膨胀宇宙中的应用研究等
05
非平衡态统计物理
混沌同步、网络动力学等
06
量子物理与量子信息
与量子信息相关的量子力学问题,包括量子光学、量子开放系统理论与量子热力学等
07
天体物理与广义相对论
天文观测数据处理、修改引力理论、宇宙早期和晚期的性质及演化、黑洞研究等
08
计算生物物理
生物分子动力学模拟、统计力学增强型采样技术、结构、结构、动力学与功能关系
09
量子少体理论
重子-重子相互作用和多夸克态
10
计算物理与原子核物理
原子核系统以及其它量子多体系统中的计算方法、原子核结构的性质研究。
 
三、学制与学习年限
我校全日制学术学位硕士研究生基本学制为3年。
四、培养方式
采用导师负责与导师组集体培养相结合的方式。重点培养研究生独立从事科学研究工作的能力。结合课程学习、教学实践和学术交流等各环节,加强专业知识的基础,追踪学科前沿动态,掌握创新性研究工作的方法,培养严谨的科研作风。
五、课程设置与学分(见课程设置表)
第一类:必修课。必修课包括三部分:
(一)由研究生院统一组织开设的公共学位课;
1.公共外语课,128学时,8学分,在第1、2学期开设,每周4学时,32周(注:外语类学科、专业的第二外语由外语学院安排);
2.公共政治课
⑴ 自然辩证法概论(理科),16学时,1学分,在第1学期开设,每周1学时,16周;
⑵ 马克思主义与社会科学方法论(文科),16学时,1学分,在第1学期开设,每周1学时,16周;
    ⑶ 中国特色社会主义理论与实践研究(文、理科),32学时,2学分,在第2学期开设,每周2学时,16周;
3.教育基本理论问题研究(除教育学院外的课程与教学论专业),32学时,2学分,在第2学期开设,每周2学时,16周。
(二)由各培养单位组织开设的专业学位课,四门,每门48学时,3学分(合计12学分),分别在第1学期开设一门,第2学期开设一门,第3学期开设二门。每学期16周,每周3学时。其中应包含一门一级学科课程和一门跨二级学科课程;
(三)由各培养单位组织开设的专业方向课,二门,每门32学时,2学分(合计4学分),分别在第2、3学期开设,每学期16周,每周2学时。该课程应由导师为所指导的研究生指定。
第二类:选修课。选修课包括两部分:
  •  指定选修课
专业外语,32学时,2学分,16周,每周2学时,在第3学期开设,由各培养单位组织开设(外语类学科、专业的研究生须在相应方向指定选修课程中选修2学分的课程);
科研方法与论文写作,16学时,1学分,每周1学时,在第1学期开设。
  •  任意选修课
专业选修课,2门。每门32学时,2学分,每周2学时,在第2、3学期开设,共16周。
六、学术研讨和学术报告
学术学位硕士研究生在学期间参加学术活动是培养过程中巩固基础、提高质量的必要环节。为培养研究生的学术研究能力和语言表达能力,营造良好的学术氛围,提高研究生培养质量,丰富学院(中心、所)学术文化生活,研究生在校期间参加各种类型的学术活动不得少于5次。研究生学术报告包括自己作专题学术报告、参加学术报告会、前沿讲座以及各种专题研讨班等。
七、教学实践和社会实践
在校硕士研究生必须参加教学实践活动。教学实践活动以授课、辅导、答疑、实验课以及批改作业为主要形式,其目的是使研究生对大学本科的教学实践有直接的初步的体会,锻炼表达能力。教学实践活动安排在第4学期。由导师负责考核,考核合格者计入1学分。
八、中期考核
为确保硕士研究生的培养质量,硕士生在入学后第三学期末,进行一次中期考核,各培养单位学位评定分委员会要对硕士研究生进行一次全面考核,内容包括思想品德和治学态度、课程学习、科研和工作能力等。
九、学位(毕业)论文
学位论文第四学期开始。在导师指导下独立完成,所做工作具有一定的创新性,能够在相关研究领域的学术会议上报告成果或会议论文集以及本专业的学术期刊上发表论文。
学位论文开题报告、撰写规范等以《硕士研究生培养办法》及《研究生学位论文撰写规范的规定》的具体规定为准。
十、附则

附件1:
硕士研究生课程教学计划表
学    院:物理与电子技术学院           学科专业:理论物理
研究方向:A量子多体理论 B新物理理论的唯象研究 C原子核理论 
D引力理论与宇宙学 E非平衡态统计物理 F量子物理与量子信息
G天体物理与广义相对论 H 计算生物物理I量子少体理论
J计算物理与原子核物理
课程类别
课程名称
学分
学时
开课学期
考核方式
 
学位课
公  
外语
8
128
1-2
考试
自然辩证法/
马克思主义与社会科学方法论
1
16
1
考试
中国特色社会主义理论与实践
研究
2
32
2
考试
群论
3
48
1
考试
高等量子力学
3
48
1
考试
量子统计物理学
3
48
2
考试
量子场论
3
48
2
考试
A
原子核理论
2
32
2
考试
群论专题
2
32
2
考试
B
粒子物理
2
32
1
考试
高能物理实验与唯象
2
32
3
考试
C
原子核理论
2
32
2
考试
计算核物理
2
32
3
考试
D
现代微分几何及其在物理学中的应用
2
32
2
考试
广义相对论及其引力理论
2
32
2
考试
E
非平衡态统计物理
2
32
2
考试
非线性物理
2
32
3
考试
F
量子光学
2
32
2
考试
量子信息论
2
32
3
考试
G
现代微分几何及其在物理学中的应用
2
32
2
考试
广义相对论及其引力理论
2
32
2
考试
H
生物大分子结构与功能
2
32
2
考试
分子动力学模拟
2
32
3
考试
I
量子少体理论
2
32
2
考试
群论专题
2
32
2
考试
J
原子核壳模型
2
32
2
考试
现代数值分析
2
32
3
考试
指定
选修课
专业外语
2
32
3
考试
科研方法与论文写作
1
16
1
考查
 
符号运算与科技排版
2
32
2
考查
核结构专题
2
32
3
考试
规范场论
2
32
3
考查
重整化理论
2
32
3
考查
重离子核物理
2
32
2
考查
核反应专题
2
32
2
考查
现代宇宙学
2
32
3
考查
引力波物理
2
32
3
考查
科技论文写作
2
32
4
考查
计算物理
2
32
3
考试
Matlab程序设计与数值计算
2
32
1
考查
量子热力学
2
32
3
考查
引力规范理论
2
32
3
考查
广义相对论的哈密顿表述及其引力联络动力学理论
2
32
3
考查
FORTRAN语言
2
32
2
考试
夸克物理专题
2
32
3
考查
核物理前沿专题
2
32
3
考查
实践课程
 
教学与社会实践
1
16
3
 
注:
  • 根据教育部要求,硕士研究生必须选修1学分的政治理论公共选修课,文科选修《马克思主义与社会科学方法论》,理科选修《自然辩证法》。
  • 除课程学习外,还包括教学实践和社会实践1学分。
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
附件2
 
阅读参考书目
A量子多体理论部分:
1.胡济民等:《原子核理论》,原子能出版社,1987年.
2.曾谨言、孙洪洲:《原子核结构理论》,上海科技出版社,1987年.
3. Bohr A., Mottelson B. R., Nuclear Structure Vol. I, Reading, MA: Benjamin, 1975.
4. Bohr A., Mottelson B. R., Nuclear Structure Vol. II, Reading, MA: Benjamin, 1975.
5. Ring P., Suhuck P., The Nuclear Many-Body Problem, Berlin: Springer-Verlag, 1980.
6. de-Shalit A. andTalmi I., Nuclear Shell Theory, New York: Academic Press, 1963.
7. Iachello F., Arima A., The Interacting Boson Model, Cambridge: Cambridge University, 1987.
8. Greiner W. and Maruhn J. A., Nuclear models, Berlin: Springer-Verlag, 1996.
9. Biedenharn L. C. and Louk J. D., Angular Momentum in Quantum Physics, Theory and Application, Reading, MA :Addison-Wesley, 1981.
10. Racah G., Group theory and spectroscopy, Springer Tracts in Modern Physics, 1965, 37: 28.
11. Judd B. R., Operator Techniques in Atomic Spectroscopy, New York: McGraw-Hill, 1963.
12. Rowe D. J., A computationally tractable version of the collective model, Nucl. Phys. A, 2004, 735: 372.
13. Elliott J. P., Collective Motion in the Nuclear Shell Model. I. Classification Schemes for States of Mixed Configurations, Proc. R. Soc. London A, 1958 245: 128.
14. Elliott J. P., Collective Motion in the Nuclear Shell Model. II. The Introduction of Intrinsic Wave-Functions, Proc. R. Soc. London A, 1958, 245: 562.
15. Elliott J. P., M. Harvey, Collective Motion in the Nuclear Shell Model. III. The Calculation of Spectra, Proc. R. Soc. London A, 1963, 272: 557.
16. Cejnar P., Jolie J., and Casten R. F., Rev. Mod. Phys., 2010, 82: 2155.
17. Stephens F. S., Coriolis effects and rotation alignment in nuclei, Rev. Mod. Phys., 1975, 47: 43.
18. Heyde K. and Wood J. L., Shape coexistence in atomic nuclei, Rev. Mod. Phys., 2011, 83: 1467.
19. Iachello F., Dynamic Symmetries at the Critical Point, Phys. Rev. Lett., 2000, 85: 3580.
20. Pan F., Gueorguiev V. G., and Draayer J. P., Algebraic Solutions of an Extended Pairing Model for Well Deformed Nuclei, Phys. Rev. Lett., 2004, 92: 112503.
21. Iachello F., Dynamic Supersymmetries of Differential Equations with Applications to Nuclear Spectroscopy, Phys. Rev. Lett., 2005, 95: 052503.
22. Van Isacker P., Dynamical Symmetry and Higher-Order Interactions, Phys. Rev. Lett., 1999, 83: 4269.
23. Guan X., Launey K. D., Xie M., Bao., Pan F. and Draayer J. P., Heine-Stieltjes correspondence and the polynomial approach to the standard pairing problem. Phys. Rev. C, 2012, 86: 024313.
24. Pan F., Bao L., Zhang Y.-Z., Draayer J. P., Construction of basis vectors for symmetric irreducible representations of O(5) supset O(3), Eur. Phys. J. Plus, 2014, 129: 169.
25. Pan F., Yuan S., Launey K. D., Draayer J. P., A new procedure for constructing basis vectors of SU(3) supset SO(3), Nucl. Phys. A, 2016, 952: 70.
26. Li B., Pan F., and Draayer J. P., Quantum phase transition in the spherical mean-field plus the quadrupole-quadrupole and pairing model in a single-j shell, Phys. Rev. C, 2016, 93: 044312.
27. Wang Y., Pan F., Xie M., Launey K. D., and Draayer J. P., Angular momentum projection for a Nilsson mean-field plus pairing model, Nucl. Phys. A, 2016, 950: 1.
28. Guan X., Launey K. D., Wang Y., Pan F., and Draayer J. P., Ground-state properties of rare-earth nuclei in the Nilsson mean-field plus extended-pairing model, Phys. Rev. C, 2015, 92: 044303.
29. Pan F., Zhang Y., Xu H.-C., Dai L. -R., Draayer J. P., An alternative solvable description of the E(5) critical point symmetry in the interacting boson model, Phys. Rev. C, 2015, 91: 034305.
30. Pan F., Li B., Zhang Y.-Z., and Draayer J. P., Heine-Stieltjes correspondence and a new angular momentum projection for many-particle systems, Phys. Rev. C, 2013, 88: 034305.
 
B新物理理论的唯象研究部分:
  1. 章乃森:《粒子物理》,科学出版社,1986年。
  2. 肖振军,吕才典:《粒子物理学导论》,科学出版社,2016年。
3.戴元本:《相互作用的规范理论》,科学出版社,2005年。
4.李政道:《粒子物理和场论》,上海科学技术出版公司,2006年。
5.周邦融:《量子场论》,高等教育出版社,2007年。
6.曹昌祺:《量子非阿贝尔规范场论》,科学出版社,2008年。
7.许咨宗:《核与粒子物理导论》,中国科技大学出版社,2009年。
8.朱洪元:《量子场论》,北京大学出版社,2013年。
9.黄涛:量子色动力学引论,北京大学出版社, 2011年。
10.石康杰,杨文力,杨战营:《量子场论与重整化导论》,科学出版社,2014年。
11.Barger V., Phillips R.: Collider Physics, Addison-Wesley Publishing Company, 2007。
12. Cheng T.P., Li L.F.: Gauge theory of elementary particle physics. USA:Oxford University Press, 1984。
13. Itzykson C., Zuber J.B.: Quantum field theory. USA: McGraw-Hill Inc., 1980。
14. Field R. D.: Application of Perturbative QCD, Addison-Wesley Publishing  Company, 1989。
15.Weinberg, Steven, The Quantum Theory of Fields Vol. 2. UK:Cambridge University Press, 1996。
16.Greiner, W., Quantum Chromodynamics. Germany:Springer-Verlag Berlin and Heidelberg GmbH & Co. K, 2002。
17.Peskin, Michael E., An introduction To Quantum Field Theory. USA:Westview Press, 1995。
18.Srednicki M.:Quantum Field Theory. UK: Cambridge University Press,2007。
19.Farhi E. and Susskind L., Technicolor, Phys. Rept. 74 (1981) 277.
20.Gunion F. J., Haber  H. E., Kane G. L. and Dawson S., The Higgs Hunter’s Guide, Front. Phys. 80 (2000) 1.
21. Frampton P. H., Hung P. Q., Sher  M., Quarks and leptons beyond the third generation, Phys. Rept. 330 (2000) 263.
22. Hill C. T. and Simmons E. H., Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381(2003)235; [Erratum-ibid, 390 (2004)553].
23.Pumplin J.et al. [CTEQ Collaboration], Parton distributions and the strong coupling: CTEQ6AB PDFs, JHEP 0602 (2006) 032.
24.Larios F., Martinez R. and Perez M. A., New physics effects in the flavor-changing neutral couplings of the top quark, Int. J. Mod. Phys. A 21 (2006) 3473 [hep-ph/0605003] [INSPIRE].
25.Djouadi A., The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys.Rept.457(2008)1.
26.Gonzalez-Garcia M. C. and Maltoni M., Phenomenology with Massive Neutrinos, Phys. Rept. 460 (2008)1.
27. Xing Z. Z., Theoretical overview of neutrino properties, Int. J. Mod. Phys. A 23, 4255 (2008).
28. Langacker P., The physics of heavy Z ′Gauge Bosons, Rev. Mod. Phys. 81(2009)1199.
29. Incandela J.R., Quadt A., Wagner W. and Wicke D., Status and Prospects of Top-Quark Physics, Prog. Part. Nucl. Phys. 63 (2009) 239 [arXiv:0904.2499] [INSPIRE].
30.Williams M., Burgess C. P., Maharana A., and Quevedo F., New constraints (and motivations) for Abelian gauge bosons in the MeV-TeV mass range, JHEP 1108 (2011) 106.
31. Olive K.A. et al., [Particle Data Group], Review of Particle Physics (RPP), Chin. Phys. C 38,090001(2014).
 
C原子核理论部分:
1. 卢希庭、江栋兴、叶沿林:《原子核物理》(第二版),北京:原子能出版社,2001。
2. 胡济民、杨伯君、郑春开:《原子核理论(卷I)》(第二版),北京:原子能出版社,1993。
3. 胡济民:《原子核理论(卷II)》(第二版),北京:原子能出版社,1996。
4. 胡济民、钟云霄:《原子核的宏观模型》,济南:山东科学技术出版社,1998。
5. 胡济民:《核裂变物理学》,北京:北京大学出版社,1999。
6. 徐躬耦、王顺金:《原子核理论(核反应部分)》,北京:高等教育出版社,1992。
7. 王书暖:《核反应理论》,北京:原子能出版社,2007。
8. 程檀生、钟毓澎:《低能及中高能原子核物理学》,北京:北京大学出版社,1997。
9. 戴光曦:《实验原子核物理学》,北京:原子能出版社,1995。
10. 张丰收、葛凌霄:《原子核多重碎裂》,北京:科学出版社,1998。
11. Bohr, A., Mottelson, B.R., Nuclear Structure, Singapore: World Scientific Publishing Co. Pte. Ltd., 1998.
12. Ring, P., Suhuck, P., The Nuclear Many-Body Problem, Berlin Heidelberg: Springer-Verlag, 1980.
13. Krane, K.S., Introductory Nuclear Physics, New York: John Wiley & Sons, 1988.
14. Wong, S., Introductory Nuclear Physics (2nd edition), Weinheim: Wiley-VCH Verlay Gmbll & Co. KGaA, 2004.
15. Brack M., Bhaduri R. K., Semiclassical Physics, New York: Addison-Wesliy, 1997.
16. Fröbrich, P., Lipperheide, R., Theory of Nuclear Reactions, Oxford: Clarendon press, 1996.
17. Glendenning, N.K., Direct Nuclear Reactions, Singapore: World Scientific Publishing Co. Pte. Ltd., 2004.
18. Hofmann H., The Physics of Warm Nuclei: with Analogies to Mesoscopic Systems, Oxford: Oxford University Press, 2008.
19.Langanke, K., Maruhn, J.A., Koonin, S.E., Computational Nuclear Physics, Berlin Heidelberg: Springer-Verlag, 1991.
20. Krappe H. J., Pomorski K., Theory of Nuclear Fission, Berlin Heidelberg: Springer-Verlag, 2012.
21. Vertes, A., Nagy, S., Klencsar, Z., Handbook of Nuclear Chemistry, New York: Kluwer Academic Publishers, 2003.
22. Hasse R.W., Geometrical Relationships of Macroscopic Nuclear Physics, Heidelberg: Springer -Verlag, 1988.
23. Myers W. D., Droplet Model of Atomic Nuclei. New York: Plenum, 1977.
24. Ignatyuk A. V., Statistical Properties of Excited Atomic Nuclei, IAEA Report: INDC (CCP)–233/L, 1985.
25. Fröbrich, P., Gontchar, I.I., Langevin description of heavy-ion collision within the surface friction model, Phys. Rep., 292: 131, 1998.
26. Feldmeier, H., Transport phenomena in dissipative heavy-ion collisions: the one-body dissipation approach, Rep. Prog. Phys., 50: 915, 1987.
27. Schmidt, K.H., Morawek, W., The conditions for the synthesis of heavy nuclei, Rep. Prog. Phys., 54: 949, 1991.
28. Hanggi, P., Talkner, P., Borkovec, M.,Reaction-rate theory: fifty years after Kramers, Rev. Mod. Phys., 62: 251, 1990.
29. Paul, P., Thoennessen, M., Fission Time Scales from Giant Dipole Resonances, Annu. Rev. Nucl., Part. Sci., 44: 65, 1994.
30. Huizenga, J.R., Moretto, L.G., Nuclear Level Densities, Annu. Rev. Nucl., Part. Sci., 22: 427, 1972.
31.Cantoa, L.F., Gomesb, P.R.S., Donangeloa, R., Husseinc, M.S., Fusion and breakup of weakly bound nuclei, Phys. Rep., 424: 1, 2006.
32. Bertulani, C.A., Gade, A., Nuclear astrophysics with radioactive beams, Phys. Rep., 485: 195, 2010.
33. 林承键:《原子核反应》,2017年华东地区核物理暑期学校讲义,2017.
34. Maruhn J.A., et al., The TDHF code Sky3D, Comput. Phys. Commun., 2014, 185: 2195–2216.
35. Bulgac A., Time-Dependent Density Functional Theory and the Real-Time Dynamics of Fermi Superfluids, Annu. Rev. Nucl. Part. Sci., 63: 97–121, 2013.
36. Sierk A. J., Langevin model of low-energy fission, Phys. Rev. C, 96: 034603, 2017.
 
D引力论与宇宙学部分:
1.须重明,吴雪君: 《广义相对论与现代宇宙学》,南京师范大学出版社,1999年。
2.刘辽、 赵峥:《广义相对论(第2版)》, 高等教育出版社,2004年。
3.王永久:《引力论与宇宙论》,湖南师范大学出版社,2004年。
4.俞允强:《物理宇宙学》,北大出版社, 2000年。
5.王永久:《经典宇宙和量子宇宙》,科学出版社,2010年。
6.赵峥、刘文彪:《广义相对论基础》,  清华大学出版社,2010年。
7.王永久:《经典黑洞与量子黑洞》,科学出版社,2008年。
8.向守平,冯珑珑:《宇宙大尺度结构的形成》,中国科学技术出版社,2010年。
9.赵峥:《黑洞的热性质与时空奇异性》,北京师范大学出版社,1999年。
10.俞允强:《热大爆炸宇宙学》,北京大学出版社,2002年。
11.韦伯(著),陈凤至、张大卫(译):《广义相对论与引力波》,科学出版社,1979年。
12.梁灿彬、周彬:微分几何入门与广义相对论(下册-第二版),北京:科学出版社,2009年。
13. Carmeli, M., Classical fields general relativity and gauge theory. Singapore: World Scientific Publishing Company, 1982.
14. Wald, R. M., General Relativity. Chicago and London: The Univ. of Chicago Press, 1984.
15. Liddle, A. R., Lyth, D. H., Cosmological inflation and large-scale structure. Cambridge : Cambridge Univ. Press, 2000.
16. Kolb, E. W., Turner, M.S., The Early Universe. Princeton: Princeton Univ. Press, 1990.
17. Schutz B.F., Geometrical methods of mathematical physics, London: Cambridge University Press,1980.
18. Hartle, J. B., Gravity: an introduction to Einstein’s general relativity. Singapore: World Publishing Co, 2008.
19. Dodelson, S., Modern Cosmology. Elsevier Pte Ltd., 2008.
20. Hawking S.W., Israel W., General Relativity: An Einstein Centenary Suevey, Cambridge: Cambridge University Press, 1979.
21. Guth A.H., Inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D 23: 347, 1981.
22. Copeland E.J., Sami M., Tsujikawa S., Dynamics of dark energy, Int. J. Mod. Phys. D 15: 1753-1936, 2006.
23. Nojiri S., Odintsov S.D., Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models, Phys. Rept. 505: 59-144, 2011.
24. Carroll S.M., Duvvuri V., Trodden M., Turner M.S., Is Cosmic Speed-Up Due to New Gravitational Physics? Phys. Rev. D70: 043528, 2004.
25. Cognola G., Elizalde E., Nojiri S., Odintsov S.D., Zerbini S., Dark energy in modified Gauss-Bonnet gravity, late-time acceleration and the hierarchy problem, Phys.Rev.D73: 084007, 2006.
26. Li M., Li X.D., Wang S., Wang Y., Dark Energy, Commun. Theor. Phys. 56: 525-604, 2011.
27. Peebles P., Ratra B., The Cosmological Constant and Dark Energy, Rev. Mod. Phys. 75: 559-606, 2003.
28. Li M., A Model of Holographic Dark Energy, Phys. Lett. B 603: 1, 2004.
29. Cai R.G., A Dark Energy Model Characterized by the Age of the Universe, Phys. Lett. B. 657: 228, 2007.
30. Brans C., Dicke R.H., Mach’s principle and a relativistic theory of gravitation, Phys. Rev. 124: 925-935, 1961.
31. Felice A.D., Tsujikawa S., f(R) theories, Living Rev. Rel. 13: 3, 2010.
32. Sotiriou T.P., Faraoni V., f(R) Theories of Gravity, Rev. Mod. Phys. 82: 451-497, 2010.
33. Bertolami O., Boehmer C.G., Harko T., Lobo F.S.N., Extra force in f(R) modified theories of gravity, Phys. Rev. D 75: 104016, 2007.
34. Bertolami O., Lobo F.S.N., Paramos J., Nonminimal coupling of perfect fluids to curvature, Phys. Rev. D 78: 064036, 2008.
35. Harko T., Modified gravity with arbitrary coupling between matter and geometry, Phys. Lett. B 669: 376-379, 2008.
36. Eling C., Guedens R., Jacobson T., Non-equilibrium Thermodynamics of Spacetime, Phys. Rev. Lett. 96: 121301, 2006.
37. Padmanabhan T., Gravity and the thermodynamics of horizons, Phys. Rept. 406: 49-125, 2005.
38. Akbar M. and Cai R.G., Thermodynamic Behavior of Friedmann Equation at Apparent Horizon of FRW Universe, Phys.Rev.D 75: 084003, 2007.
39. Felice A.D., Tsujikawa S., Construction of cosmologically viable f(G) gravity models, Phys. Lett. B 675: 1-8, 2009.
40. Malik K.A., Wands D., Cosmological perturbations, Phys. Rept. 475:1-51, 2009.
41. Jaccard M., Maggiore M. and Mitsou E., Nonlocal theory of massive gravity, Phys. Rev. D 88:  044033, 2013.
42. Biswas T., Conroy A. , Koshelev A.S. and Mazumdar A., Generalized ghost-free quadratic curvature gravity, Class. Quant. Grav. 31:015022, 2014.
43. J.D.E. Creighton, W.G. Anderson, Gravitational-Waves Physics and Astronomy, Milwaukee: WILEY-VCH Verlag GmbH & Co. KGaA, 2011.
44. M. Maggiore: Gravitational Waves, New York: Oxford University Press, 2008.
45. I. Ciufolini, V. Gorini, U. Moschella, Gravitational Waves, London: Institute of Physics Publishing, 2001.
46. B.P. Abbott, et al. [The LIGO Scientific Collaboration, Virgo Collaboration], Observation of gravitational waves from a binary black hole merger, Physical Review Letter, 2016, 116 (6), 016102.
47. A. Ashtekar, New Hamiltonian Formulation of General Relativity, Phys. Rev. D, 1987, 36, 1587-1602.
48. A. Ashtekar, S. Fairhurst, and B. Krishnan, Isolated Horizons: Hamiltonian Evolution and the First Law, Phys. Rev. D, 2000, 62, 104025.
49. A. Ashtekar, B. Krishnan, Dynamical Horizons and Their Properties, Phys. Rev. D, 2003, 68, 104030.
50. A. Ashtekar, C. Beetle, J. Lewandowski, Geometry of Generic Isolated Horizons, Class. Quant. Grav., 2002, 19, 1195-1225.
 
E非平衡态统计物理部分:
1. 吕翎:《非线性动力学与混沌》,大连出版社,1999年。
2. 汪小帆:《复杂网络理论与应用》,清华大学出版社,2006年。
3. Aguirre J, Sevilla-Escoboza R, Gutiérrez R, Papo D, Buldú J M. Synchronization of Interconnected Networks: The Role of Connector Nodes. Phys. Rev. Lett., 2014, 112 (24):248701.
4.Bhowmick S K, Amritkar R E, Dana S K. Experimental evidence of synchronization of time-varying dynamical network. Chaos, 2012, 22(2):023105.
5.Čelikovskýa S, Lynnyka V, Chen G R. Robust synchronization of a class of chaotic networks. J. Franklin Inst., 2013, 350(10):2936.
6. Dörfler F, Bullo F. Synchronization in complex networks of phase oscillators: A survey. Automatica, 2014, 50(6):1539.
7. Du H Y. Adaptive open-plus-closed-loop method of projective synchronization in drive-response dynamical networks. Commun. Nonlinear Sci. Numer. Simulat., 2012 17(12):3353.
8. Ji D H, Park J H, Yoo W J, Won S C, Lee S M. Synchronization criterion for Lur’e type complex dynamical networks with time-varying delay. Phys. Lett. A, 2010, 374(10): 1218.
9. Kalsi K, Lian J, Hui S, Żak S H. Sliding mode observers for systems with unknown input: a high-gain approach, Automatica, 2010, 46(2):347.
10.Leyva I Sendi˜na-Nadal I, Almendral J A, Navas A, Olmi S, Boccaletti S. Explosive synchronization in weighted complex networks. Phys. Rev. E, 2013, 88(4): 04280.
11. Mondaln S, Mahanta C. Adaptive second order terminal sliding mode controller for robotic manipulators. J. Franklin Institute, 2014, 351(4):2356.
12. Selivanov A A, Lehnert J, Dahms T, Hövel P, Fradkov A L, Schöll E. Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators. Phys. Rev. E, 2012, 85(1):016201.
13. Song Q K. Synchronization analysis in an array of asymmetric neural networks with time-varying delays and nonlinear coupling. Appl. Math. Comput., 2010, 216 (5): 1605.
14. Szmoski R M, Pereira R F, de Souza Pinto S E. Effective dynamics for chaos synchronization in networks with time-varying topology. Nonlinear Sci. Numer. Simulat., 2013 18(6): 1491.
15. Um J, Hong H, Park H. Nature of synchronization transitions in random networks of coupled oscillators. Phys. Rev. E, 2014, 89(1):012810.
16. Watanabe T. Rich-club network topology to minimize synchronization cost due to phase difference among frequency-synchronized oscillators. Physica A, 2013, 392 (5): 1246.
17. Yu H T, Wang J, Liu Q X, Sun J B, Yu H F. Delay-induced synchronization transitions in small-world neuronal networks with hybrid synapses. Chaos, Solitons and Fractals, 2013, 48(1):68.
18. Yu W W, Chen G R, Lü J H. On pinning synchronization of complex dynamical networks. Automatica, 2009, 45(2):429.
19. Zhang J B, Liu Z R, Xu J H. Synchronization in oscillator networks with coupling balance. Chaos, Solitons and Fractals, 2009, 39(2):556.
20. Zou Y L, Chen G R. Choosing effective controlled nodes for scale-free network synchronization. Physica A, 2009, 388(14):2931.
21.Abdurahman A, Jiang H J, Teng Z D. Finite-time synchronization for memristor-based neural networks with time-varying delays. Neural Networks, 2015, 69:20.
22. Lü L, Li C R, Chen L S, Wei L L. Lag projective synchronization of a class of complex network constituted nodes with chaotic behavior. Commun. Nonlinear Sci. Numer. Simulat., 2014, 19(8):2843.
23. Lü L, Li C R, Chen L S. Projective synchronization of the small world delayed network with uncertainty. Nonlinear Dynamics, 2014, 76 (2):1633.
24. Lü L, Li G, Guo L, Meng L, Zou J R, Yang M. Generalized chaos synchronization of a weighted complex network with different nodes. Chin. Phys. B, 2010, 19(8): 080507.
25. Lü L, Li Y S, Fan X, Lü N. Outer synchronization between uncertain complex networks based on Backstepping design. Nonlinear Dynamics, 2013, 73(1):767.
26. Shang Y, Chen M Y, Kurths J. Generalized synchronization of complex networks. Phys. Rev. E, 2009, 80(2):027201.
27. Al-mahbashi G, Noorani M S Md, Bakar S. A. Projective lag synchronization in drive-response dynamical networks with delay coupling via hybrid feedback control. Nonlinear Dyn., 2015, 82(3):1569.
28. Murguia C, Fey Rob H B, Nijmeijer H. Network synchronization using invariant- manifold-based diffusive dynamic couplings with time-delay. Automatica, 2015, 57: 34.
29. Lipa N, Mannes E, Santos A, Nogueira M. Firefly-inspired and robust time synchronization for cognitive radio ad hoc networks. Computer Communications, 2015, 66:36.
30. Ghaffari A, Arebi S. Pinning control for synchronization of nonlinear complex dynamical network with suboptimal SDRE controllers. Nonlinear Dyn., 2016, 83(1): 1003.
31. Murguia C, Fey Rob H B, Nijmeijer H. Network synchronization using invariant- manifold-based diffusive dynamic couplings with time-delay. Automatica, 2015, 57: 34-44.
32. Sivaranjani K, Rakkiyappan R, Cao J D, Alsaedi A. Synchronization of nonlinear singularly perturbed complex networks with uncertain inner coupling via event triggered control. Appl. Math. Comput., 2017, 311:283-299.
33. Ma J, Wu F Q, Wang C N. Synchronization behaviors of coupled neurons under electromagnetic radiation. Int. J. Mod. Phys. B, 2017, 31:1650251-14.
34. Lü L, Li C R, Li G, Zhao G N. Cluster synchronization transmission of laser pattern signal in laser network with ring cavity (in Chinese). Sci. Sin.-Phys. Mech. Astron., 2017, 47:080501-10.
35. Hu J Q, Liang J L, Cao J D. Synchronization of hybrid-coupled heterogeneous networks: Pinning control and impulsive control schemes. J. Franklin Institute, 2014, 351:2600-2622.
36. Rakkiyappan R, Sakthivel N. Pinning sampled-data control for synchronization of complex networks with probabilistic time-varying delays using quadratic convex approach. Neurocomputing, 2015, 162:26-40.
37. Dharani S, Rakkiyappan R, Park J H. Pinning sampled-data synchronization of coupled inertial neural networks with reaction-diffusion terms and time-varying delays. Neurocomputing, 2017, 227:101-107.
38. Delellis P, Garofalo F, Iudice F L. The partial pinning control strategy for large complex networks. Automatica, 2018, 89:111-116.
39. Abdurahman A. New results on the general decay synchronization of delayed neural networks with general activation functions. Neurocomputing, 2018, 275:2505-2511.
40. Fan A L, Li J M. Adaptive neural network prescribed performance matrix projection synchronization for unknown complex dynamical networks with different dimensions. Neurocomputing, 2018, 281:55-66.
41. Liu D, Yang G H. Event-triggered synchronization control for complex networks with actuator saturation. Neurocomputing, 2018, 275:2209-2216.
42. Wang L L, Chen T P. Finite-time anti-synchronization of neural networks with time-varying delays. Neurocomputing, 2018, 275:1595-1600.
43. Wu X, Liu S, Yang R, Zhang Y J, Li X Y. Global synchronization of fractional complex networks with non-delayed and delayed couplings. Neurocomputing, 2018, 290:43-49.
44. Boaretto B R R, Budzinski R C, Prado T L, Kurths J, Lopes S R. Suppression of anomalous synchronization and nonstationary behavior of neural network under small-world topology. Physica A, 2018, 497:126-138.
45. Cheng L, Yang Y Q, Li L, Sui X. Finite-time hybrid projective synchronization of the drive-response complex networks with distributed-delay via adaptive intermittent control. Physica A, 2018, 500:273-286.
46. Li F F, Li J N, Shen L J. State feedback controller design for the synchronization of Boolean networks with time delays. Physica A, 2018, 490:1267-1276.
47. Li Z, Ren T, Xu Y J, Jin J Y. The relationship between synchronization and percolation for regular networks. Physica A, 2018, 492:375-381.
48. Ekaterinchuk E, Jungeilges J, Ryazanova T, Sushko I. Dynamics of a minimal consumer network with bi-directional influence. Commun. Nonlinear Sci. Numer. Simulat., 2018, 58: 107-118.
49. Castanedo-Guerra I, Steur E, Nijmeijer H. Synchronization of “light-sensitive” Hindmarsh- Rose neurons. Commun. Nonlinear Sci. Numer. Simulat., 2018, 57:322-330.
50. Mohseni A, Gharibzadeh S, Bakouie F. The effect of network structure on desynchronization dynamics. Commun. Nonlinear Sci. Numer. Simulat., 2018, 63:271-279.
 
F量子物理与量子信息部分:
1. 龙桂鲁、邓富国、曾谨言:《量子力学新进展(第五辑)》,北京: 清华大学出版社,2011年。
2. 张永德:《量子信息物理原理》,北京: 科学出版社,2005年。
3. 李承祖、陈平形、梁林梅、戴宏毅,《量子计算机研究——原理和物理实现》,北京:科学出版社,2011年
4. Abah O., Robnagel J., Jacob G., Deffer S., Schmidt-Kaler F., Singer K. and Lutz E. Single-Ion Heat Engine at Maximum Power, Phys. Rev. Lett., 109, 203006 (2012).
5. Blickle V. and Bechinger C. Realization of a micrometre-sized stochastic heat engine, Nat. Phys. 8, 143 (2012).
6. Breuer H. P. and Petruccione F., The Theory of Open Quantum Systems, Oxford, Oxford university press, 2002.
7. Bruning E. and Petruccione F., Theoretical Foundations of Quantum Information Processing and Communication, Lecture Notes in Physics, Vol. 787, Berlin, Springer-Verlag, 2004.
8. Brunner N., Linden N., Popescu S., Skrzypczyk P., Virtual qubit, virtual temperatures, and the foundations of thermodynamics, Phys. Rev. E 85, 051117(2012).
9. Deffner S. and Zurek W. H., Foundations of statistical mechanics from symmetries of entanglement, New. J. Phys. 18, 060313 (2016).
10. Esposito M., Kawai R., Lindenberg K., Efficiency at maximum power of low dissipation Carnot engines. Phys. Rev. Lett. 105, 150603 (2010).
11. Fialko O. and Hallwood D. W., Isolated quantum heat engine, Phys. Rev. Lett. 108, 085303 (2012).
12. Gardine C. W., Quantum Noise, New York: Springer, 2000.
13. Gemmer J., Michel M., and Mahher G., Quantum Thermodynamics, Lecture Notes in Physics, Vol. 784, Berlin: Springer-Verlag, 2009.
14. Huang X. L., Wang L. C., and Yi X. X., Quantum Brayton cycle with coupled systems as working substance, Phys. Rev. E 87, 012144 (2013).
15. Huang X. L., Wang T., and Yi X. X. Effects of reservoir squeezing on quantum systems and work extraction, Phys. Rev. E 86, 051105 (2012).
16. Jarzynski C., Nonequilibrium equality for free energy differences, Phys. Rev. Lett. 78, 2690 (1997).
17. Kieu T. D. The second law, Maxwell's demon, and work derivable from quantum heat engines, Phys. Rev. Lett. 93, 140403 (2004).
18. Lambropoulos P. and Petrosyan D., Fundamentals of Quantum Optics and Quantum Information, Berlin, Springer, 2006.
19. Linden N., Popescu S., and Skrzypczyk P., How small can thermal machines be? The smallest possible refrigerator, Phys. Rev. Lett. 105, 130401 (2010).
20. Munoz E. and Pena F. J. Quantum heat engine in the relativistic limit: The case of a Dirac particle, Phys. Rev. E 86, 061108 (2012).
21. Nielsen M. A. and Chuang I. L., Quantum Computation and Quantum Information, Cambridge, Cambridge University Press, 2000.
22. Quan H. T., Liu Y. X., Sun C. P., and Nori Franco, Quantum thermodynamic cycles and quantum heat engines, Phys. Rev. E 76,031105 (2007).
23. Quan H. T., Quantum thermodynamic cycles and quantum heat engine. II. Phys. Rev. E 79, 041129 (2009).
24. Quan H. T., Zhang P. and Sun C. P., Quantum heat engine with mulilevel quantum systems, Phys. Rev. E 72, 056110 (2005).
25. Quan H. T., Zhang P. and Sun C. P., Quantum-classical transition of photon-Carnot engine induced by quantum decoherence, Phys. Rev. E 73, 036122 (2006).
26. Robnagel J. Abah O., Schmidt-Kater F., Singer K., and Lutz E., Nanoscale heat engine beyond the Carnot limit, Phys. Rev. Lett. 112, 030602 (2014).
27. Scully M. O. and Zubairy M. S., Quantum Optics, Cambridge, Cambridge University Press, 1997.
28. Thomas G. and Johal R. S. Coupled quantum Otto cycle, Phys. Rev. E 83, 031135 (2011).
29. Wall D. F. and Milburn G. J., Quantum Optics, Berlin, Springer, 1994.
30. Weiss U., Quantum Dissipative System, Singapore: World Scientific, 1999.
31. Zhang T., Liu W. T., Chen P. X., and Li C. Z. Four level entangled quantum heat engines, Phys. Rev. A 75, 062102 (2007).
 
G天体理论与广义相对论部分:
1.李宗伟,肖兴华:《天体物理学》,北京:高等教育出版社,2000年。
2.李开泰、黄艾香:《张量分析及其应用》,科学出版社,2004年。
3.梁灿彬,周彬:《微分几何入门与广义相对论》,北京:科学出版社,2006年。
4.刘辽、赵峥:《广义相对论》,北京:高等教育出版社,2004年。
5.王永久:《经典黑洞与量子黑洞》,北京:科学出版社,2008年。
6.王永久:《经典宇宙和量子宇宙》,北京:科学出版社,2010年。
7.向守平、冯珑珑:《宇宙大尺度结构的形成》,北京:中国科学技术出版社,2010年。
8.须重明,吴雪君: 《广义相对论与现代宇宙学》,南京:南京师范大学出版社,1999年。
9.俞允强:《物理宇宙学》,北京:北大出版社, 2000年。
10.赵峥:《黑洞的热性质与时空奇异性》,北京:北京师范大学出版社,1999年。
11.韦伯(著),陈凤至、张大卫(译):《广义相对论与引力波》,北京:科学出版社,1979年。
12.梁灿彬、周彬:微分几何入门与广义相对论(下册-第二版),北京:科学出版社,2009年。
13. Baekler, P., Hehl, F.W., Nester, J.M., Phys. Rev. D, 2011,83, 024001.
14.Banerjee,A.,Inflation in Brane World Gravity, arxiv: 1512.08166,2015.
15. Carmeli M., Classical fields general relativity and gauge theory, Singapore: World Scientific Publishing Company, 1982.
16. Carroll S. M., Spacetime and geometry,兴界图书出版公司,2004.
17. Clifton T., Ferreira P.G., Padilla A., Constantinos Skordis: Modified Gravity and Cosmology, Physics Reports, 2012,513:1.
18. Dodelson S., Modern Cosmology, Amsterdam: Elsevier, 2008.
19. Faraoni V., Matter instability in modified gravity, Phys.Rev.D, 2006, 74:104017.
20. Felice A. D.,Tsujikawa S., f(R) theories,Living  Rev. Rel. 2010,13:3.
21. Hartle, J. B.,Gravity,兴界图书出版公司,2003年.
22. Joyce A.,Lombriser L., Schmidt F., Dark Energy vs. Modified Gravity, arxiv: 1601.06133, 2016.
23. Liddle A. R., Lyth D. H., Cosmological inflation and large-scale structure. Cambridge: Cambridge Univ. Press, 2000.
24. Maartens R., Koyama, K., Brane-World Gravity, Living Rev. Relativity, 2010, 13: 5.
25. Kolb, E. W., Turner, M.S., The Early Universe. Princeton: Princeton Univ. Press, 1990.
26. Ryu S.,Takayanagi, T.,Holographic Derivation of Entanglement Entropy from AdS/CFT, Phys.Rev.Lett. 2006,96: 181602.
27. Ryu S.,Takayanagi T.,Aspects of Holographic Entanglement Entropy,JHEP, 2006,0608:045.
28. Schutz B.F., Geometrical methods of mathematical physics, London: Cambridge University Press,1980.
29. Sotiriou T. P., Faraoni V., f(R) Theories of Gravity,Rev. Mod. Phys. 2010,82:451.
30. Wald R. M., General Relativity. Chicago and London: The Univ. of Chicago Press, 1984.
31. Weinberg, S., Cosmology,中国科学技术大学出版社,2013.
32. Zanzi A., Chameleonic Theories: A Short Review, Universe, 2015, 1: 446.
33. J.D.E. Creighton, W.G. Anderson, Gravitational-Waves Physics and Astronomy, Milwaukee: WILEY-VCH Verlag GmbH & Co. KGaA, 2011.
34. M. Maggiore: Gravitational Waves, New York: Oxford University Press, 2008.
35. I. Ciufolini, V. Gorini, U. Moschella, Gravitational Waves, London: Institute of Physics Publishing, 2001.
36. B.P. Abbott, et al. [The LIGO Scientific Collaboration, Virgo Collaboration], Observation of gravitational waves from a binary black hole merger, Physical Review Letter, 2016, 116 (6), 016102.
37. A. Ashtekar, New Hamiltonian Formulation of General Relativity, Phys. Rev. D, 1987, 36, 1587-1602.
38. A. Ashtekar, S. Fairhurst, and B. Krishnan, Isolated Horizons: Hamiltonian Evolution and the First Law, Phys. Rev. D, 2000, 62, 104025.
39. A. Ashtekar, B. Krishnan, Dynamical Horizons and Their Properties, Phys. Rev. D, 2003, 68, 104030.
40. A. Ashtekar, C. Beetle, J. Lewandowski, Geometry of Generic Isolated Horizons, Class. Quant. Grav., 2002, 19, 1195-1225.
 
 
H计算生物物理部分:
1.乔中东:《分子生物学》,军事医学科学出版社,2011年。
2. Frenkel & Smit :《分子模拟从算法到应用》(汪文川 等译),化学工业出版社,2002年。
3.陈正隆,徐为人,汤立达:《分子模拟的理论与实践》,化学工业出版社,2007年。
4.雷姆:《蛋白质生物化学与蛋白质组学》,科学出版社; 2006年。
5.沈银柱:《进化生物学》,高等教育出版社 ,2008年。
6.梁栋材:《X射线晶体学基础》, 科学出版社发行处 ,2006年。
7.张树政,朱正美,王克夷等译校:《糖生物学基础》,科学出版社,2003年。
8.Chipot, C., Pohorille, A., Eds, Free Energy Calculations-Theory and Applications in Chemistry and Biology,USA:Theoretical Chemistry Accounts,2008.
9.D. Peter Snustad and Michael J. Simmons,Principles of Genetics,USA:Wiley,2008.
10.Dan Grau and Wen-Hsiung Li,Fundamentals of Molecular Evolution, USA: Sinauer Associates,2000.
11.George H. Stout, Lyle H. Jensen,X-ray Structure determination-A practical Guide, USA:Wiley-Interscience,1989.
12.Ajit Varki, Richard D Cummings, Jeffrey D Esko, Hudson H Freeze, Pamela Stanley, Carolyn R Bertozzi, Gerald W Hart, and Marilynn E Etzler, Essentials of Glycobiology,NY: Cold Spring Harbor Laboratory Press, 2009.
13.Peijun Xu; Jinguang Wang; Yong Xu; Huiying Chu; Hujun Shen; Depeng Zhang; Meixia Zhao; Jiahui Liu; Guohui Li: Binding Modes and Interaction Mechanism Between Different Base Pairs and Methylene Blue Trihydrate: A Quantum Mechanics Study, ADVANCE IN STRUCTURAL BIOINFORMATICS, 2015,827:187-203
14.Xue, Wu; Peijun,Xu; Jinguang Wang; Yong Xu; Ting Fu; Meixia Zhao; Depeng Zhang; Jiahui Liu; Hujun Shen; Zhilong Xiu; Guohui Li: Theoretical Studies on the Folding Mechanisms for Different DNA G-quadruplexes, DVANCE IN STRUCTURAL BIOINFORMATICS, 2015,827:123-141
15.Xu Peijun; Wang, Jinguang; Xu, Yong; Huiying Chu; Jiahui Liu; Meixia Zhao; Depeng Zhang; Yingchen Mao; Beibei Li; Yang Ding; Guohui Li: Advancement of Polarizable Force Field and Its Use for Molecular Modeling and Design, ADVANCE IN STRUCTURAL BIOINFORMATICS, 2015,827:19-32
16.Chanjuan Wan; Bo Wu; Zhenwei Song; Jiahai Zhang; Huiying Chu; Wang, Aoli;Liu, Qingsong; Shi, Yunyu; Li, Guohui; Wang, Junfeng: Insights into the molecular recognition of the granuphilin C2A domain with PI(4,5)P2, CHEMISTRY AND PHYSICS OF LIPIDS,2015,18(6): 61-67
17.Hujun Shen; Guohui Li: Bridging the Missing Link between Structure and Fidelity of the RNA-Dependent RNA Polymerase from Poliovirus through Free Energy Simulations, JOURNAL OF CHEMICAL THEORY AND COMPUTATION,2014,10(11): 5195-5206
18.Hujun Shen; Yan Li; Pengyu Ren; Dinglin Zhang; Guohui Li: Anisotropic Coarse-Grained Model for Proteins Based On Gay-Berne and Electric Multipole Potentials, JOURNAL OF CHEMICAL THEORY AND COMPUTATION,2014,36(15): 1103-1113
19.Beisi Xu; Hujun Shen; Xiao Zhu; Guohui Li: Fast and Accurate Computation Schemes for Evaluating Vibrational Entropy of Proteins, JOURNAL OF COMPUTATIONAL CHEMISTRY,2011,32(15): 3188-3193
20.Johnny Wu; Xia Zhen; Hujun Shen; Guohui Li; Ren, Pengyu: Gay-Berne and electrostatic multipole based coarse-grain potential in implicit solvent, JOURNAL OF CHEMICAL PHYSICS,2011 135(15)
21.Jinan Wang; Weiliang Zhu; Guohui Li;Hansmann, Ulrich H. E.: Velocity-scaling optimized replica exchange molecular dynamics of proteins in a hybrid explicit/implicit solvent, JOURNAL OF CHEMICAL PHYSICS, 2011,135(8)
22.Feimeng Zheng; Caifeng Yue; Guohui Li; Bin He; Wei Cheng; Xi Wang; Min Yan; Zijie Long; Wanshou Qiu; Zhongyu Yuan; Jie Xu; Liu, Bing; Qian Shi; Lam, Eric W. -F.; Mien-Chie Hung; Quentin Liu: Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype, NATURE COMMUNICATIONS, 2016 7
23.Xiangda,Peng; Yuebin, Zhang; Huiying, Chu; Guohui, Li: Free Energy Simulations with the AMOEBA Polarizable Force Field and Metadynamics on GPU Platform, JOURNAL OF COMPUTATIONAL CHEMISTRY, 2016,37(6) : 614-622
24.Guohui Li; Hujun Shen; Dinglin Zhang; Yan Li; Honglei Wang: Coarse-Grained Modeling of Nucleic Acids Using Anisotropic Gay-Berne and Electric Multipole Potentials, JOURNAL OF CHEMICAL THEORY AND COMPUTATION,2106,12(2):676-693
25.Hujun Shen; Yan Li; Peijun Xu; Xiaofang Li; Huiying Chu; Dinglin Zhang; Guohui Li: An Anisotropic Coarse-Grained Model Based on Gay-Berne and Electric Multipole Potentials and its Application to Simulate a DMPC Bilayer in an Implicit Solvent Model, JOURNAL OF COMPUTATIONAL CHEMISTRY, 2015,36(15): 1103-1113
26.Huihui Wang; Hao Wu; Hujun Shen; Shaote Geng; Beibe Wangi; Yanfang Wang; Xiaojun Ma; Guohui Li; Mingqian Tan: A bimodal MRI and NIR liposome nanoprobe for tumor targeted molecular imaging, JOURNAL OF MATERIALS CHEMISTRY B, 2015,3(45): 8832-8841
27.Peijun Xu; Hujun Shen; Lu Yang; Yang Ding; Beibei Li; Ying Shao; Yingchen Mao; Guohui Li: Coarse-grained simulations for organic molecular liquids based on Gay-Berne and electric multipole potentials, JOURNAL OF MOLECULAR MODELING, 2013 19(2): 551-558
28.Xupeng Cao; Xudong Wu; Chaofan Ji; Changhong Yao; Zhaoan Chen; Guohui Li; Song Xue: Comparative transcriptional study on the hydrogen evolution of marine microalga Tetraselmis subcordiformis, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 201439(32): 18235-18246
29.Jianzhong Chen; Jinan Wang; Weiliang Zhu; Guohui Li: A computational analysis of binding modes and conformation changes of MDM2 induced by p53 and inhibitor bindings, JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN,2013,27-(11):965-974
30.Xue Wu; Yue Shi; Pengyu Ren; Deping Wang; Guohui Li: Exploring the Relationship between Sequences, Structures, Dynamical Behaviors and Functions of New Type Protein Drugs: DARPins, CURRENT PHARMACEUTICAL DESIGN,2013,19(12)2308-2317
 
  I 量子少体理论:
1.马中骐:《物理学中的群论》,北京: 科学出版社,2006年.
2.宁平治:《奇异核物理》,科学出版社,2008年.
3.于祖荣:《核物理中的群论方法》,原子能出版社,1993年.
4.宁平治:《原子核物理基础》,高等教育出版社,2003年.
5. Goldman T., Maltman K., Stephenson G. J., Wang F., et al. Strangeness -3 Dibaryons,  Phys. Rev. Lett., 59, 627 (1987).
6. Stancu F, Group Theory in Subnuclear Physics, OXFORD: CLARENDON PRESS, 1996.
7. Li Q. B.,  Shen P. N., Zhang Z. Y., Yu Y. W., Dibaryon systems in chiral SU(3)  quark model, Nucl. Phys. A 683, 487 (2001).
8.  Yuan X. Q., Zhang Z. Y., Yu Y. W., and Shen P. N., DD dibaryon structure in chiral  SU(3) quark model, Phys. Rev. C 60 , 045203 (1999).
9.  Huang F, Shen P. N., Dong Y. B., and Zhang Z. Y., Understanding the structure of d∗(2380) in chiral quark model, Sci. China-Phys. Mech. Astron. 59, 622002 (2016).
10. Huang F., Zhang Z. Y.,  Shen P. N., Wang W. L., Is d* a candidate for a hexaquark-dominated exotic state? Chin. Phys. C39, 071001 (2015).
11. Shen P. N., Zhang Z. Y., Yu. Y. W., Yuan X. Q.  and Yang S., H-dihyperon in quark cluster model, J. Phys. G 25, 1807 (1999).
12. Ping J. L.,Wang F., Goldman T., Effective baryon-baryon potentials in the quark delocalization and color screening model, Nucl. Phys. A 657, 95 (1999).
13. Zhang Z. Y., Yu. Y. W., Ching C.R.,  Ho T.H., and Lu Z.D., Suggesting a di-omega dibaryon search in heavy ion collision experiments, Phys. Rev. C 61 , 065204 (2000).
14. DAI L. R., Delta- Delta dibaryon structure in extended chiral SU(3) quark model, Chin. Phys. Lett. 22,2204 (2005).
15. Jin-Quan Chen, Jialun Ping, Fan Wang. Group Representation Theory for  Physicists, Singapore: World Scientfic,1989.
16. Dai L. R., Pan F. Matrix Elements of One- and Two-Body Operators in the Unitary Group Spproach (I) Formalism,  Commun. Theor. Phys, 35 :129 (2001).
17. Chen X. Y., Ping J. L,  Is the exotic X(5568) a bound state? Eur. Phys. J. C 76, 351(2016).
18. Dai L. R., The mixing of scalar mesons and the baryon-baryon interaction, Eur. Phys. J. A 47, 26 (2011).
19. Dai L. R., Yuan L,, Zheng N., et al.,The possible strangeness dibaryon states in a chiral quark model, Mod. Phys. Lett. A 30, 1550048 (2015).
20. Pang H. R., Ping J. L., et al., The di-omega in the extended quark delocalization, color screening model, Phys. Rev. C 66, 025201 (2002).
21. Dai L. R., Zhang Z. Y., Yu. Y. W., Wang P., NN interactions in the extended chiral SU(3) quark model, Nucl. Phys. A727, 321(2003).
22. Pang H. R., Ping J. L., et al., The study of dibaryon systems with strangeness on chiral quark model[J]. Mod. Phys. Lett., A 20, 69 (2005).
23. Dai L. R., Zhuang H., Fu Y., Zhang Z. Y., Baryon-baryon interactions in the  extended chiral SU(3) quark model, Mod. Phys. Lett. A 23, 2413(2008). 
24. Glozman L .Y., Riska D. O., The spectrum of the nucleons and the strange hyperons and chiral dynamics, Phys. Rept., 268, 263(1996).
25. Zhang Z. Y., Yu. Y. W., et al. The Hyperon-nucleon interactions in a chiral SU(3) quark model, Nucl. Phys. A625, 59 (1997).
26. Li Q. B., Shen P. N., Possible dibaryons with strangeness S=-5, Phys. Rev. C 62, 028202 (2000).
27. Dai Y. B. and Wu Y. L., Dynamically spontaneous symmetry breaking and masses of lightest nonet scalar mesons as composite Higgs bosons, Eur Phys J. C 39, S1,1 (2004).
28. Huang F., Zhang Z. Y., Yu. Y. W., Resonating group method study of kaon-nucleon elastic scattering in the chiral SU(3) quark model, Phys. Rev. C 70, 044004 (2004).
29. Huang F., Zhang Z. Y., Kaon-nucleon interaction in the extended SU(3) quark model,  Phys. Rev. C 72, 024003 (2005).
30. Olive K.A., et al. (Particle Data Group), Review of Particle Physics, Chin. Phys. C 38, 090001 (2014).
 
J 计算物理与原子核物理
1. Becker T., Weispfenning W.,Gröbner Bases,Springer : New York, 1993.
2. Abbasbandy S., Improving Newton–Raphson method for nonlinear equations by modified Adomian decomposition method, Applied Mathematics and Computation, 2003, 145: 887.
3.马金淦:《计算物理学》,科学出版社,2005年。
4. 蔺小林、蒋耀林:《现代数值分析》,国防工业出版社,2005年。 
5. de-Shalit A. andTalmi I., Nuclear Shell Theory, New York: Academic Press, 1963.
6. 胡济民等:《原子核理论》,原子能出版社,1987年。
7. 曾谨言、孙洪洲:《原子核结构理论》,上海科技出版社,1987年。
8. Bohr A., Mottelson B.R., Nuclear Structure Vol. I, Reading, MA: Benjamin, 1975.
9. Bohr A., Mottelson B.R., Nuclear Structure Vol. II, Reading, MA: Benjamin, 1975.
10. de-Shalit A. andTalmi I., Nuclear Shell Theory, New York: Academic Press, 1963.
11. Iachello F., Arima A., The Interacting Boson Model, Cambridge: Cambridge University, 1987.
12. Greiner W. and Maruhn J. A., Nuclear models, Berlin: Springer-Verlag, 1996.
13. Biedenharn L. C. and Louk J. D., Angular Momentum in Quantum Physics, Theory and Application, Reading, MA :Addison-Wesley, 1981.
14. Racah G., Group theory and spectroscopy, Springer Tracts in Modern Physics, 1965, 37: 28.
15. Rowe D. J., A computationally tractable version of the collective model, Nucl. Phys. A, 2004, 735: 372.
16. Elliott J. P., Collective Motion in the Nuclear Shell Model. I. Classification Schemes for States of Mixed Configurations, Proc. R. Soc. London A, 1958 245: 128.
17. Elliott J.P., Collective Motion in the Nuclear Shell Model. II. The Introduction of Intrinsic Wave-Functions, Proc. R. Soc. London A, 1958, 245: 562.
18. Elliott J.P., M. Harvey, Collective Motion in the Nuclear Shell Model. III. The Calculation of Spectra, Proc. R. Soc. London A, 1963, 272: 557.
19. Cejnar P., Jolie J., and Casten R. F., Rev. Mod. Phys., 2010, 82: 2155.
20. Stephens F. S., Coriolis effects and rotation alignment in nuclei, Rev. Mod. Phys., 1975, 47: 43.
21. Heyde K. and Wood J. L., Shape coexistence in atomic nuclei, Rev. Mod. Phys., 2011, 83:1467.
22. Iachello F., Dynamic Symmetries at the Critical Point, Phys. Rev. Lett., 2000, 85: 3580.
23. Pan F., Gueorguiev V. G., and Draayer J. P., Algebraic Solutions of an Extended Pairing Model for Well Deformed Nuclei, Phys. Rev. Lett., 2004, 92: 112503.
24. Iachello F., Dynamic Supersymmetries of Differential Equations with Applications to Nuclear Spectroscopy, Phys. Rev. Lett., 2005, 95: 052503.
25. Van Isacker P., Dynamical Symmetry and Higher-Order Interactions, Phys. Rev. Lett., 1999, 83: 4269.
26. Guan X., Launey K. D., Xie M., Bao., Pan F. and Draayer J. P., Heine-Stieltjes correspondence and the polynomial approach to the standard pairing problem. Phys. Rev. C, 2012,86: 024313.
27. Pan F., Yuan S., Launey K. D., Draayer J. P., A new procedure for constructing basis vectors of SU(3) supset SO(3), Nucl. Phys. A, 2016, 952: 70.
28. Li B., Pan F., and Draayer J. P., Quantum phase transition in the spherical mean-field plus the quadrupole-quadrupole and pairing model in a single-j shell, Phys. Rev. C, 2016,93: 044312.
29. Wang Y., Pan F., Xie M., Launey K. D., and Draayer J. P., Angular momentum projection for a Nilsson mean-field plus pairing model, Nucl. Phys. A, 2016, 950: 1.
30. Guan X., Launey K. D., Wang Y., Pan F., and Draayer J. P., Ground-state properties of rare-earth nuclei in the Nilsson mean-field plus extended-pairing model, Phys. Rev. C, 2015,  92: 044303.
 

上一篇:原子与分子物理硕士培养方案(2018)
下一篇:理论物理硕士培养方案(2018)