光学专业硕士培养方案(2018)
2019-11-13 来源:辽宁师范大学 作者:admin 浏览次数:
辽宁师范大学
硕士研究生培养方案修订工作审批表(院级)
 
(培养单位公章)
专业名称
光学
培养单位
物理与电子技术学院
导师组长
刘成森
联系人
及联系电话
张黎宇,84258367
培养方案制定工作组成员
序号
姓名
工作单位
职务职称
本人签名
1
刘成森
辽宁师范大学
教授
 
2
李成仁
辽宁师范大学
教授
 
3
宋  哲
辽宁师范大学
副教授
 
4
王玉新
辽宁师范大学
副教授
 
5
田  勇
辽宁师范大学
副教授
 
6
张  涛
辽宁师范大学
副教授
 
导师组长意见:
 
同意该培养方案
签名 :                  年   月   日
学术委员会意见:
 
同意该培养方案
 
                      学术委员会主席签字:             年   月   日
 
注:培养方案上报研究生院前请完整填报本表,并签字盖章。

 

光学专业

攻读硕士学位研究生培养方案

一、培养目标
以习近平新时代中国特色社会主义思想为指导方针,坚持德、智、体全面发展,培养具有良好道德品质和科研作风,具有合作精神和创新精神,能积极为社会主义现代化建设事业服务的专门人才。掌握光学专业扎实的基础理论、系统深入的专业知识、相应的实验技能和方法;熟练运用计算机编程和数据处理进行光学研究,具有独立从事光学专业创造性科学研究工作的能力;掌握一门外语。
二、专业及研究方向
 
代码
研究方向名称
简要说明
01
光信息技术
三维光学信息处理及显示、光学全息
02
非线性光学
激光混沌、激光网络
03
光电器件及其应用
通信用光电器件、晶体光学器件
04
稀土离子光谱
稀土掺杂发光材料制备、发光机理和应用
05
光电信息材料与器件
光电信息材料制备、光电性能研究及应用
06
光学与通信技术
无线通信技术、信号与图像处理
07
光学与通信定位技术
无线信号定位算法、网络信息处理
08
大气光学与红外通信技术
大气辐射传输理论研究和应用、红外通信系统设计、仿真与实现
09
光学与信息处理技术
无线定位跟踪、无线传感器网络
10
光电检测与数字图像处理
光电信息检测技术、数字图像处理理论与技术
 
三、学制与学习年限
全日制学术学位硕士研究生,基本学制为3年。
四、培养方式
采用导师负责与导师组集体培养相结合的方式。重点培养研究生独立从事科学研究工作的能力。结合课程学习、教学实践和学术交流等各环节,加强专业知识的基础,追踪学科前沿动态,掌握创新性研究工作的方法,培养严谨的科研作风。
 
五、课程设置与学分(见课程设置表)
第一类:必修课。必修课包括两部分:
(一)由研究生院统一组织开设的公共学位课;
1.公共外语课,128学时,8学分,在第1、2学期开设,每周4学时,32周(注:外语类学科、专业的第二外语由外语学院安排);
2.公共政治课
⑴ 自然辩证法概论(理科),16学时,1学分,在第1学期开设,每周1学时,16周;
⑵ 马克思主义与社会科学方法论(文科),16学时,1学分,在第1学期开设,每周1学时,16周;
    ⑶ 中国特色社会主义理论与实践研究(文、理科),32学时,2学分,在第2学期开设,每周2学时,16周;
(二)由各培养单位组织开设的专业学位课,四门,每门48学时,3学分(合计12学分),分别在第1学期开设两门,第2学期开设两门。每学期16周,每周3学时。其中应包含一门一级学科课程和一门跨二级学科课程;
(三)由各培养单位组织开设的专业方向课,二门,每门32学时,2学分(合计4学分),分别在第2、3学期开设,每学期16周,每周2学时。该课程应由导师为所指导的研究生指定。
第二类:选修课。选修课包括两部分:
  •  指定选修课
专业外语,32学时,2学分,16周,每周2学时,在第3学期开设,由各培养单位组织开设(外语类学科、专业的研究生须在相应方向指定选修课程中选修2学分的课程);
科研方法与论文写作,16学时,1学分,每周1学时,在第1学期开设。
  •  任意选修课
专业选修课,2门。每门32学时,2学分,每周2学时,在第2、3学期开设,共16周。
六、学术研讨和学术报告
学术学位硕士研究生在学期间参加学术活动是培养过程中巩固基础、提高质量的必要环节。为培养研究生的学术研究能力和语言表达能力,营造良好的学术氛围,提高研究生培养质量,丰富学院(中心、所)学术文化生活,研究生在校期间参加各种类型的学术活动不得少于5次。研究生学术报告包括自己作专题学术报告、参加学术报告会、前沿讲座以及各种专题研讨班等。
七、教学实践和社会实践
教学与社会实践是我校研究生培养工作的重要环节。
教学与社会实践的培养应根据不同的专业特点来安排;同时,指导教师还应根据研究生个人特点在制定个人培养计划时,分别侧重于学术研究型和应用研究型。对科学研究和社会实践活动既要兼顾,又要有所侧重。
八、中期考核
为确保硕士研究生的培养质量,硕士生在入学后第三学期末,进行一次中期考核,各培养单位学位评定分委员会要对硕士研究生进行一次全面考核,内容包括思想品德和治学态度、课程学习、科研和工作能力等。
 
九、学位(毕业)论文
学位论文第四学期开始。在导师指导下独立完成,所做工作具有一定的创新性,能够在相关研究领域的学术会议上报告成果或会议论文集以及本专业的学术期刊上发表论文。
学位论文开题报告、撰写规范等以《硕士研究生培养办法》及《研究生学位论文撰写规范的规定》的具体规定为准。
十、附则
 
 
 
 
 
 
 
 
 
 
附件1:
硕士研究生课程教学计划表
学    院:物理与电子技术                   学科专业:光学
研究方向:A 光信息技术  B 非线性光学  C 光电器件及其应用
D 稀土离子光谱  E光电信息材料与器件  F 光学与通信技术
G光学与通信定位技术  H大气光学与红外通信技术
I光学与信息处理技术  J 光电检测与数字图像处理
 
课程类别
课程名称
学分
学时
开课学期
考核方式
 
学位课
公  
外语
8
128
1-2
考试
自然辩证法/
马克思主义与社会科学方法论
1
16
1
考试
中国特色社会主义理论与实践
研究
2
32
2
考试
激光物理
3
48
1
考试
矩阵与数值分析
3
48
1
考试
光电子技术基础
3
48
2
考试
数字图像处理
3
48
2
考试
A
光信息技术原理
2
32
3
考试
傅里叶光学
2
32
2
考试
B
稀土离子光谱学
2
32
1
考试
非线性光学
2
32
2
考试
C
晶体物理
2
32
1
考试
光纤通信技术
2
32
2
考试
D
稀土离子光谱学
2
32
1
考试
非线性光学
2
32
2
考试
E
光电信息技术
2
32
2
考试
固体薄膜材料与制备技术
2
32
3
考试
F
无线传感器网络技术及应用
2
32
1
考试
嵌入式系统应用及设计
2
32
2
考试
G
数字无线通信系统
2
32
1
考试
估计理论
2
32
2
考试
H
大气光学
2
32
1
考试
红外大气通信系统
2
32
2
考试
I
无线网络定位技术
2
32
2
考试
面向对象程序设计
2
32
1
考试
J
数字信号处理
2
32
2
考试
图像识别技术
2
32
3
考试
指定
选修课
专业外语
2
32
3
考试
科研方法与论文写作
1
16
1
考查
 
通信系统中的计算机辅助设计
2
32
2
考试
计算物理
2
32
1
考试
FORTRAN语言
2
32
2
考试
 
 
 
 
 
 
 
 
 
 
实践课程
 
教学与社会实践
1
16
 
 
注:
  • 根据教育部要求,硕士研究生必须选修1学分的政治理论公共选修课,文科选修《马克思主义与社会科学方法论》,理科选修《自然辩证法》。
  • 除课程学习外,还包括教学实践和社会实践1学分。
 
 
 
 
 
 
 
 
 
 
附件2
阅读参考书目
光信息技术部分:
一、中文
1. 陈家壁、苏显渝:《光学信息技术原理及应用》,高等教育出版社,2009年。
2. 吕乃光:《傅立叶光学》电子工业出版社,2011年。
3. 苏显渝,张冠申,陈泽先等,鞋楦三维面型光电自动测量系统,光学工程,1989,19(6).1-5.
4. 由志福,钟越先,袁超龙等,投影栅相位法三维形体检测精确解相方法的研究.光学学报,1999,19(1):41-44.
5. 马少鹏,金观昌,代树红,应用时域相位解包裹方法的三维形貌测量系统,光学技术.2002,28(5):395-400.
6. 张吴明,钟约先,基于结构光编码的相展开方法,光学技术,2002,28(5):404-406.
7. 程萍,朱海金,张超等, 消激光散斑的全息正弦光栅制作技术研究, 光学学报,2009,29(12): 317-321.
8. 苏礼坤,苏显渝,李万松等.基于调制度测量的三维面型术[J].光学学报.1999.19(9):1257-1262.
9. 冯淑艳,刘成森,顾佳佳等.用数字相移干涉技术评价全息台稳定性.物理实验.2013.33(9):23-26.
10. 刘畅,刘成森,孙佳星等.旋转反射抛物面镜.物理实验.2015.36(7):20-22.
11. 刘成森,邱玥,鲍洁等.任意边界形状物体的三维轮廓测量.辽宁师范大学学报,2015,38(4):470-474.
二、外文
1.Awatsuji Y, Sasada M, Kubota, T. Parallel quasi-phase-shifting digital holography, Applied Physics Letters, 2004, 85(6): 1069-1071.
2. J. W. Goodman: Introduction to Fourier Optics. Roberts & Company Publishers, 2004
3. K. Chen, J. Xi, Y. Yu & J. F. Chicharo. Fast quality-guided flood-fill phase unwrapping algorithm for three-dimensional fringe pattern profilometry, Optical Metrology and Inspection for Industrial Applications, 2010, 1-9.
4. M. Born, E.Wolf. Principles of Optics, Cambridge: University Press, 1999.
5.Myung K Kim. Principles and techniques of digital holographic microscopy. SPIE Reviews, 2010, 1: 018005.
6.Nomura T, Murata S, Nitanai E, Numata T.Phase-shifting digital holography with a phasedifference between orthogonal polarization, Applied Optics, 2006, 45: 4873–4877.
7.Nomura T, Murata S, Nitanai E, Numata T.. Phase-shifting digital holography with a phasedifference between orthogonal polarization, Applied Optics, 2006, 45: 4873–4877.
8. R. N. Bracewell: The Fourier Transformation and Its Applications. New York: McGraw-Hill 2000.
9.Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis forcomputer-based topography and interferometry, Journal of Optical Society of America, 1982, 72(1): 156-160.
10.Yamaguchi I,Zhang T. Phase-shifting digital holography, Optics Letters, 1997,22 (6):  1268-1270.
11.Yongjin Sung, Wonshik Choi, Christopher Fang-Yen, Kamran Badizadegan, Ramachandra R.Dasari and Michael S. Feld. Optical diffraction tomography for high resolution live cellimaging. Opt. Express, 2009 17(1): 266–277.
12. X. Y. Su, W. S. Zhou, V. von Bally. Automated phase-measuring profilometry using defocused projection of a Ronchi grating, Opt.Commun.1992,94(6):561-573.
13. Qu Fang, Zhong Jingang. 3-D moving-lip shape measurement based on digital color-encoded structure light, Optical Technique, 2006,32(5):691-695.
14. Chen F, Brown G M,Song M. Overview of three-dimensional shape measurement using optical methods, Opt Eng, 2000,39(1):10-22.
15. Yuhang He,Yiping Cao, A composite-structured-light 3D measurement method based on fringe parameter calibration, Optics and Lasers Engineering,2011,49:773-779.
16. Zhang Z H, Zhang D, Peng X, Performance analysis of a 3D full-field sensor based on fringe projection, Optics and Lasers Engineering,2004,42:341-353.
17. W.Xu, I.Cumming, A region growing algorithm for InSAR phase unwrapping, Proceedings of the 1996 International Geoscience and Remote Sensing Symposium,Lincoln,1996.5,2044-2046.
18.W.Xu,I.Cumming, A region-Growing Algorithm for InSAR Phase Unwrapping, IEEE Trans .on G RS,1999,37(1):124-134.
19. Q.Lin, J.F.Vesecky,H.A.Zebker.Phase unwrapping through fringe-line detection in synthetic aperture radar interferometry. Applied Optics,1994,33(2):201-208.
20. D. C. Ghinglia, L. A. Romero, Direct phase estimation from phase differences using fast elliptic partial differential equation solvers. Optic Letters,1989,14(20):1107-1109.
非线性光学部分
一、中文
1.李淳飞:《非线性光学》,哈工大出版社,2005年。
2. 沈柯:《光学中的混沌》,东北师范大学出版社,2000年。
3. 梁义,王兴元. 结点含时滞的具有零和非零时滞耦合的复杂网络混沌同步. 物理学报,2013,62(1): 018901-6.
4. 赵建利,王京,王慧. 洛伦兹-哈肯激光混沌系统有限时间稳定主动控制方法研究. 物理学报,2012,61(11): 110209-9.
5. 刘妮,梁九卿. 含时驱动的Dicke模型的混沌特性. 物理学报. 2017, 66(11): 46-53.
二、外文
1. Behnia S, Ziaei J, Khodavirdizadeh M. Manifestation of quantum chaos in second-harmonic generation. Phys. Lett. A. 2017, 381: 2882.
  1. Bellomo B, Giorgi G L , Palma G M, et al., Quantum synchronization as a local signature of super- and subradiance. Phys. Rev. A. 2017, 95: 043807.
  2. Li W L, Li C, Song H S. Quantum parameter identification for a chaotic atom ensemble system, Phys. Lett. A. 2016, 380: 672.
  3. Li W L, Li C, Song H S. Quantum synchronization in an optomechanical system based on Lyapunov control. Phys. Rev. E. 2016, 93: 062221.
  4. Lü L, Li C R, Li G, et al., Synchronization transmission of laser pattern signal within uncertain switched network. Commun. Nonlinear Sci. Numer. Sim. 2017, 47: 267.
  5. Lü L, Li C R, Chen L S, et al., New technology of synchronization for the uncertain dynamical network with the switching topology. Nonlinear Dyn. 2016, 86: 655.
  6. Li W L, Zhang F Y, et al. Quantum synchronization in a star-type cavity QED network. Commun. Nonlinear Sci. Numer. Simul. 2017, 42: 121-131.
  7. Mari A, Farace A, Didier N, et al., Observation of quantum stochastic synchronization in a dissipative quantum system. Phys. Rev. Lett. 2013, 111:103605.
  8. Ferris A J and Poulin D. Tensor Networks and Quantum Error Correction. Phys. Rev. Lett. 2014, 113: 030501.
  9. Ahmadizadeh S, Nešić D, Freestone D B, et al., Onsynchronization of networks of Wilson-Cowan oscillators with diffusive coupling. Automatica. 2016, 7: 169-178.
11. Wu Z Y, Gong X L. Identifying the interactions in a colored dynamical network. Chinese Physics B, 2015, 24(11): 110202-4.
12. Li K Z,He E, Zeng Z R, et al. Generalized projective synchronization of two coupled complex networks of different sizes. Chinese Physics B, 2013, 22(7): 89-95.
13. Singh R K, Bagarti T. Synchronization in an evolving network. Epl, 2015, 111(5): 1-5.
14. Jalan S, Singh A. Cluster Synchronization in Multiplex Networks. Europhysics Letters, 2016, 113(3): 30002-6.
15. D'Huys O, Zeeb S, Jüngling T, et al. Synchronisation and scaling properties of chaotic networks with multiple delays. Europhysics Letters, 2013, 103(1): 10013-10018.
16. Chengren Li, Ling Lü, Ying Sun, Ying Wang, Wenjun Wang, Ao Sun. Parameter identification and synchronization for uncertain network group with different structures. Physica A. 2016, 457: 624–631.
17. Guangye Zhou, Chengren Li, Tingting Li, Yi Yang, Chen Wang, Fangjun He, Jingchang Sun. Outer synchronization investigation between WS and NW small-world networks with different  node numbers. Physica A. 2016, 457: 506–513.
18. Poria S, Khan M A, Nag M. Spatiotemporal synchronization of coupled Ricker maps over a complex network. Physica Scripta, 2013, 88(1): 015004-5.
19. Luo Q, Han Y, Han J X, et al. Exponentially asymptotical synchronization in uncertain complex dynamical networks with time delay. Journal of Physics A Mathematical and Theoretical, 2010, 43(49): 495101-12.
20. Chen S, Lü J. Parameters identification and synchronization of chaotic systems based upon adaptive control. Physics Letters A, 2002, 299(4): 353-358.
21. Zheng S, Bi Q S. Synchronization analysis of complex dynamical networks with delayed and non-delayed coupling based on pinning control. Physica Scripta, 2011, 84(2): 025008-10.
22. Liu J G. Generalized projective synchronization of fractional-order complex networks with nonidentical nodes. Chinese Physics B, 2012, 21(12): 120506-5.
23. Hu T C, Sun W G. Controlling anti-synchronization between two weighted dynamical networks. Physica Scripta, 2013, 87(1): 015001-5.
24. Senthilkumar D V, Suresh R, Lakshmanan M, et al. Global generalized synchronization in networks of different time-delay systems. Epl, 2013, 103(5): 1067-1069.
25. iu D F, Wu Z Y, Ye Q L. Structure identification of an uncertain network coupled with complex-variable chaotic systems via adaptive impulsive control. Chinese Physics B, 2014, 23(4): 040504-8.
26. Wu Z Y, Gong X L. Identifying the interactions in a colored dynamical network. Chinese Physics B, 2015, 24(11): 110202-4.
光电器件及其应用部分
一、中文
1. 蒋民华:《晶体物理》,山东科学技术出版社,1980年。
2. 朱京平:《光电子技术基础》,科学出版社,2003年。
3. 孙强:《光纤通信系统及其应用》,清华大学出版社,北方交通大学出版社,2004年。
4. 侯培培,周煜等. 晶体双折射自由空间2×4 90°光学桥接器,光学学报,2010,30(12),3413-3418
5. 裴芳芳,陈西园. 光在光轴取向任意条件下的晶体表面透射率,光学技术,2009,35(2),181-185
6. 万玲玉,周煜等,电光调制2×4 90°相移空间光学桥接器,光学学报,2012,32(7),0723002
7. 郑阳,姜会林等,基于相干激光通信的空间光混频器光机结构设计,光学学报,2013,33(9),0906008
8. 王春晖,高龙等,光束分束比对2mm平衡式相干探测系统信噪比影响的实验研究,光学学报,2011,31(11),1104002
9. 周煜,万玲玉等,相位补偿偏振分光2×4 90°自由空间光学桥接器,光学学报,2009,29(12),3291-3294
10. 万玲玉,苏世达等,基于晶体双折射和电光效应设计的90° 2×4空间光桥接器,中国激光,2009,36(9),2358-2361
11. 刘宏展,纪越峰等,信号光与本振光振幅分布对星间相干光通信系统混频效率的影响,光学学报,2011,31(10),1006001
12. 付强,姜会林等,空间激光通信研究现状及发展趋势,中国光学,2012,5(2),116-125
13. 刘立人,卫星激光通信Ⅰ链路和终端技术,中国激光,2007,34(1),3-20
14. 苏世达,万玲玉等,任意传播方向下铌酸锂晶体的横向电光效应研究,2010,30(10),2970-2977
15. 梁铨廷,物理光学,北京,机械工业出版社,1987
二、外文
1. A. Yariv, P. Yeh, Optical Waves in Crystals, New York: John Wiley & Sons, Inc., 1983.
2. Born M., Wolf E., Principles of optics, 7th. Ed., Cambridge: Cambridge University Press, 1999.
3. Seiji Norimatsu, Noboru Takachio, et al., An optical 90°-hybrid balanced receiver module using a planar lightwave circuit, IEEE Photon. Technol. Lett., 1994, 6(6), 737-740.
4. M. Seimetz, C. M. Weinert, Options, feasibility and availability of 2×4 90° hybird for coherent optical systems, J Lightwave Technol., 2006, 24(3),1317-1322.
5. S. H. Jeong, K. Morito, Optical 90° hybird with broad operating bandwidth of 90 nm, Opt. Lett., 2009, 34(22),3505-3507.
6. S. H. Jeong, K. Morito, Compact optical 90° hybird employing a tapered 2×4 MMI coupler serially connected by a 2×2 MMI coupler, Opt. Express, 2010, 18(5), 4275-4288.
7. Chan V.W.S., Free-space optical communications, J Lightwave Technol., 2006, 24(12), 4750- 4762
8. D. Pak S. Cho, Geof Harston, Chris J. Kerr, et al., Improvement of coherent homodyne detection performance using time-gated amplification and LiNbO3 optical 90°hybrid, Proc. of SPIE, 2004, 5403,762-773.
9. Fay H, Electro-optic modulation of light propagating near the optic axis in LiNbO3, J. Opt. Soc. Am., 1969, 59, 1399-1404.
10. Haixia Ren, Liren Liu, etc., Double refraction and reflection of sequential crystal interfaces with arbitrary orientation of the optic axis and application to optimum design, Journal of Modern Optics, 2005, 52(4), 529-539.
11. Maximino Avendano-Alejo, and Orestes N. Stavroudis. Huygen’s principle and rays in uniaxial anisotropic media. I. Crystal axis normal to refracting surface. J. Opt. Soc. Am. (A)., 2002, 19(8): 1669-1673.
12. R. Garreis, C. Zeiss, 90°optical hybrid for coherent receivers, SPIE,1991,1522, 210-219.
13. W. R. Leeb, Optical 90 degrees hybrid Costas type recervers, Electron. Lett., 1990, 26(18), 1431-1432.
14. Zhe Song, Liren Liu, etc., Electro-optic modulation of light propagating near the optic axis with any polarization in uniaxial crystals, Optik, 2006, 117(9), 418-422.
15. Zhe Song, Peipei Hou, etc., Free-space optical crossbar network integrated in a single block of LiNbO3 crystal, Applied Optics, 2012, 51(9), 1328-1335.
稀土离子光谱部分:
一、中文
1.吕红亮、张玉明、张义门:《化合物半导体器件》,电子工业出版社,2009年。
2. 孙家跃、杜海燕、胡文祥:《固体发光材料》,化学工业出版社,2003年。
3. 徐叙瑢、苏勉曾:《发光学与发光材料》,化学工业出版社,2004年。
4. 张克从、王希敏:《非线性光学晶体材料科学》,科学出版社,2005年。
5. 张思远:《稀土离子的光谱学》,科学出版社,2007年。
二、外文
8. Zheng X Q, Shen B G. The magnetic properties and magnetocaloric effects in binary R-T(R=Pr, Gd, Tb, Dy, Ho, Er, Tm; T=Ga, Ni, Co, Cu) intermetallic compounds. Chinese Physics B. 2017, 26:1-41.
9. Wang Z J, Wang C, Han Q Y, Wang G, Zhang M D, Gao W, Zheng H R. Metal–enhanced upconversion luminescence of NaYF4:Yb/Er with Ag nanoparticles. Material Reasearch bulletin.2017, 88:182-187.
10. Kong L, Chu X, Wang C, Zhou H, Wu Y, Liu W D. Penicillamine-coated Cu/Ag alloy nanocluster superstructures:aggregation-induced emission and tunable photoluminescence from red to orange. 2018, 10:1631-1640.
11. Shaoan Z, Yihua H, Li C, Guifang J, Zhonghua W, Jun L. Luminescent properties of a green emitting persistent phosphor CdGeO3:Tb3+. Opt. Mater., 2015, 47:203-210.
12. Satoru T, Joji H, Tetsuhiko I, Tomohiro S, Seiji N. Solvothermal synthesis of Zn2GeO4:Mn2+ nanophosphor in water/diethylene glycol system. J. Solid State Chem., 2012, 189:112-116.
13. Zhangyi X, Hongliang L, Yuan Z, Qingqing S, Peng Z, Shijin D, David W Z. The electronic structures and optical properties of Zn2GeO4 with native defects. J. Alloy. Compd., 2015, 619:368-371.
14. A. N. Nazarov, S. I. Tiagulskyi, I. P. Tyagulskyy, V. S. Lysenko, L. Rebohle, J. Lehmann, S. Prucnal, M. Voelskow, and W. Skorupa. The effect of rare-earth clustering on charge trapping and electroluminescence in rare-earth implanted metal-oxide-semiconductor light- emitting devices. J. Appl. Phys,2010, 107, 123112.
15. Chaoyi Y, Nandan S, Pooi S L. Wide-bandgap Zn2GeO4 nanowire networks as efficient ultraviolet photodetectors with fast response and recovery time. Appl. Phys. Lett., 2010, 96:053108.
16. Yahong J, Yihua H. Different luminescent behaviors between photoluminescence and persistent luminescence in Tb3+ doped Li2CaGeO4 phosphors. Materials Research Bulletin, 2015, 61:16-21.
17. Jian X, Setsuhisa T, Atul D S, Jumpei U. Near-infrared multi-wavelengths long persistent luminescence of Nd3+ ion through persistent energy transfer in Ce3+, Cr3+ co-doped Y3Al2Ga3O12 for the first and second bio-imaging windows. Appl. Phys. Lett., 2015,107:081903.
18. Poria S, Khan M A, Nag M. Spatiotemporal synchronization of coupled Ricker maps over a complex network. Physica Scripta, 2013, 88 Qiongyu B, Panlai L, Zhijun W, Ting L, Shuchao X, Zhiping Y. Using Ca2+ ions to induce the long afterglow and bluish white emission of red emitting phosphor Zn3Al2Ge2O10:Cr3+. Materials and Design, 2016, 91:28-36.
19. P. D. Sahare, Manveer Singh, Pratik Kumar. Synthesis and TL characteristics of MgB4O7:Mn, Tb phosphor. Journal of Luminescence, 2015, 160:158-164.
20. Damian Pasiński, Eugeniusz Zych, Jerzy Sokolnicki. Ce3+ to Mn2+ energy transfer in Sr3Y2 Ge3O12:Ce3+, Mn2+ garnet phosphor. J. Alloy. Compd., 2015, 653:636e642.
21. Anuradha G, Nameeta B, Durga P B. Electroluminescence and photoluminescence of  rare earth (Eu, Tb)doped Y2O3 nanophosphor. Journal of Luminescence 155, 2014, 112–118.
22. S.L. Dong, H. H. Lin, T. Yu, and Q. Y. Zhang. Near-infrared quantum-cutting luminescence and energy transfer properties of Ca3(PO4)2:Tm3+,Ce3+ phosphors. J. Appl. Phys, 2014, 116,023517.
23. Vengala R B, Yung-Tang N, In-Gann C. Enhancement of white light emission from novel Ca3Y2Si3O12: Dy3+phosphors with Ce3+ ion codoping. J. Appl. Phys, 2010, 108, 023111.
24. L. Rebohle, Y. Berencén, R. Wutzler, M. Braun, D. Hiller, J. M. Ramírez, B. Garrido, M. Helm, and W. Skorupa. The electroluminescence mechanism of Er3+ in different silicon oxide and silicon nitride environments. J. Appl. Phys, 2014, 116, 123104.
25. S Som and S K Sharma .Eu3+/Tb3+codoped Y2O3nanophosphors: Rietveld refinement, bandgap and photoluminescence optimization. J. Phys. D: Appl. Phys, 2012, 45:415102.
光电信息材料与器件部分
一、中文
1. 陈培培:《现代仪器分析实验与技术》,清华大学出版社, 2006年。
2. 刘恩科《半导体物理学》, 电子工业出版社, 2008年。
3. 雷玉堂:《光电信息技术》,电子工业出版社, 2011年。
4. 宁兆远:《固体薄膜材料与制备技术》,科学出版社, 2008年。
二、外文
1. Chen K J, Hung F Y, Chang S J, et al. Microstructures, optical and electrical properties of In-doped ZnO thin films prepared by sol-gel method , Applied Surface Science, 2009, 255 (12): 6308-6311.
2. Elanchezhiyan J, Lee D W, LEE W J, et al. Properties of GaN-doped ZnO thin films prepared by pulsed laser deposition. Modern Physics Letters B, 2010, 24 (28): 2785-2791.
3. Gu Y.F.,X.M.Li,J.L.Zhao,W.D.Yu,X.D.Gao,and C.Yang,”Visible-blind ultra-violet detector based on n-ZnO/p-Si heterojuntion fabricated by plasma-assisted pulsed laser deposition”,Solid State Commun,143(2007)421-424.
4. Jeong S K,Hong S K,et al.Investigation on The Origin Of Green Luminescence From Laser-ablated ZnO Thin Film.Thin Solid Films, 443(2003)5-8.
5. Kin J K, Lee J m, Lin J W, et al. High-performance transparent conducting Ga-doped ZnO films deposited by RF magnetron sputter deposition . Japanese Journal of applied Physics, 2010, 49(4):04DP09-04DP09-4.
6. Park C H, Jeong I S, Bae H.S, Kim T G and Im S. “n-ZnO/p-Si photodiodes fully isolated by B+ ion-implantation”,Nucl.instrum.Meth.B, 216(2004)127-130.
7. Perednis D, Gauckler L J.Thin film deposition using spray pyrolysis. J Electroceram, 2005, 14(2):103.
8. Prepelita P., Medianu R., sbarcea B., et al. The influence of using different substrates on the structural and optical characteristics of ZnO thin films. Applied Surface Science, 2010, 256(6):1807-1811.
9. Wang D.Y., Zhou J., and Liu G.Z., Effect of Li-doped concentration on the structure, optical and electrical properties of p-type ZnO thin films prepared by sol-gel method, J. Alloys Compd.,2009, 481 (1-2): 802.
10. Ye Zhi-zhen, Wang Jing-rui, Wu Ya-zhen, et al. Growth of phosphorus-doped p-type ZnO thin films by MOCVD . Front. Optoelectron. China, 2008, 1(1-2): 147-150.
11. Chen M, Wang X, Yu Y H, et al. X-ray photoelectron spectroscopy and auger electron spectroscopy of Al-doped ZnO films.Appl Surf Sci,2000,158(1-2):134.
12. Chen Pei liang, Ma Xiang yang, Li Dong sheng, et al. 347nm ultraviolet electroluminescence from MgxZn1-xO based light emitting device[J]. Appl Phys Lett,2007,90:251115.
13. Agrawal A, Dar T A, Solanki R, et al. Study of nonlinear optical properties of pure and Mg-doped ZnO films . Physica Status Solidi, 2015, 252:1-6.
14. Kim, Younggyu, Leem, JaeYoung. Effect of Annealing on Surface Morphology and Bandgap Shift of Sol–Gel-Derived Mg-Doped ZnO Thin Films Grown on Mica Substrates . Journal of Nanoelectronics & Optoelectronics, 2016, 11(3):265-269.
15. Thonglem S, Sirisoonthorn S, Pengpat K, et al. Properties of Mg Doped ZnO Films Prepared by Ultrasonic Spray Pyrolysis . Applied Mechanics & Materials, 2015, 804:88-92.
16. Slassi A, Lakouari N, Ziat Y, et al. Ab initio study on the electronic, optical and electrical properties of Ti, Sn and Zr-doped ZnO . Solid State Communications, 2015, 218(8):45-48.
17. Nagaraja K K, Nagaraja H S, Kumar A S. Polymer assisted preparation and characterization of ZnO and Sn doped ZnO nanostructures. Materials Science and Engineering Conference Series, 2015: 12077 -12080(4).
18. Zatsepin D A, Boukhvalov D W, Kurmaev E Z, et al. XPS and DFT study of Sn incorporation into ZnO and TiO2 host matrices by pulsed ion implantation. Physica Status Solidi, 2015, 252:1890-1896.
19. Devi V, Joshi B C, Kumar M, et al. Structural and optical properties of Cd and Mg doped zinc oxide thin films deposited by pulsed laser deposition. International Conference on Recent Trends in Physics. 2014,534(1).
20. Rana N, Chand S, Gathania A K. Band gap engineering of ZnO by doping with Mg. Physica Scripta, 2015, 90(8).
21.Jeon K S, Suryawanshi M P, Kim I Y, et al. Transparent Conductive and Wide Band Gap Characteristics of Quaternary Mg and Al Co-Doped ZnO Thin Films Prepared by Radio Frequency Sputtering Method . Science of Advanced Materials, 2016, 8(3):669-674.
22. Liu T, Zhao X R, Jin N. Synthesis and photoelectric properties of Sn-Al Co-doped ZnO films . Rengong Jingti Xuebao/journal of Synthetic Crystals, 2015, 44(3).
23. Jin Z, Qiao L, Guo C, et al. First-priniciple study of electrical and optical properties of (Al,Sn) co-doped ZnO. Optik - International Journal for Light and Electron Optics, 2016, 127(4):1988-1992.
24. Yousefi R, Farid Jamali-Sheini, Cheraghizade M, et al. Synthesis and characterization of Pb-doped ZnO nanoparticles and their photocatalytic applications. Materials Research Innovations, 2016.
25. Sun J, Fan H, Wang N, et al. Controlled synthesis of Sn doped ZnO microspheres stringed on carbon fibers with enhanced visible-light photocatalytic activities. Separation & Purification Technology, 2016, 160:67-72.
26. Chen Z, Han D, Zhao N, et al. Performance improvement of tin-doped zinc oxide thin-film transistor by novel channel modulation layer of indium tin oxide/tin zinc oxide. Japanese Journal of Applied Physics, 2015, 54 (4S).
27. Mughal A J, Oh S, Myzaferi A, et al. High-power LEDs using Ga-doped ZnO current-spreading layers. Electronics Letters, 2016, 52(4):304-306.
光学与通信技术部分:
一、中文
1.Lathi. B. P. ,Ding Z.:《现代数字与模拟通信系统(第四版)》,电子工业出版社,2011年。
2.候伯亨:《VHDL硬件描述语言与数字逻辑电路设计》,西安电子科技大学出版社,2003年。
3.马祖长,孙怡宁,梅涛:《无线传感器网络综述》,通信学报,2004,25(4): 114-124.
4.马忠梅:《ARM & Linux嵌入式系统教程》,北京航空航天大学出版社,2008年。
5.王汝传:《无线传感器网络技术及其应用》,人民邮电出版社,2011年。
6.谢显中,雷维嘉,马彬:《认知与写作无线通信网络》,人民邮电出版社,2012年。
7.袁志勇:《嵌入式系统原理与应用技术》,北京航空航天大学出版社,2009年。
8.周靖吕:《基于ARM9和嵌入式Linux的嵌入式开发平台的研究与设计》[D] ,成都:电子科技大学,2008.
9.张贤达:《矩阵分析与应用》,清华大学出版社,2013年。
10.张忠培,魏宁,史治平:《协同无线通信导论》,电子工业出版社,2010年。
二、外文
1.Akyildiz I. F. Weilian S,Sankarasubramaniam Y,Cayirci E A Survey on Sensor Networks. Communications Magazine,IEEE,Aug. 2002,40(8):102-114.
2.Arash M, Cheong B. S. Adaptive Routing for Dynamic On-Body Wireless Sensor Networks. IEEE Journal of Biomedical and Health Informatics,VOL.19,NO.2,2015:549-558.
3.Chen Shih-Lun. A Power-Efficient Adaptive Fuzzy Resolution Control System for Wireless Body Sensor Networks. IEEE Access,VOL3,2015:743-751.
4..D Wu,Y Cai,J Wang. Cooperation Policy Selection for Energy-constrained AD hoc Networks Using Correlated Equilibrium. IEEE Communications Letters,VOL.16,NO.3, 2012:349-351.
5.Farrokh E,Keyvan Z,Ali G,Sofiene A. Decentralized Relay Selection Schemes in Uniformly Distributed Wireless Sensor Networks. IEEE Transactions on Wireless Communications,VOL.11,NO.3,2012:938-950.
6.Glauber B, Guilherme S. P., Richard D. S. Distributed Fuzzy Logic-based Relay Selection Algorithm for Cooperative Wireless Sensor Networks. IEEE Sensors Journal,VOL.13,NO.11,2013:4375-4386.
7.Jin Zilong, Kim D.Y, Cho J. An Analysis on Optimal Cluster Ratio in Cluster-based Wireless Senor Networks. IEEE Sensors Journal,VOL.15,NO.11,2015:6413-6422.
8.Kamanashis B, Valipuram M, Wu X.W, An Analysis Model for Lifetime Estimation of Wireless Senor Networks. IEEE Communications Letters,VOL.19,NO.9,2015:1548-1587.
9.Leandro A. V., Azzedine B, Daniel L. G. An Energy-aware Spatio-temporal Correlation Mechanism to Perform Efficient Data Collection in Wireless Sensor Networks. Computer Communications,VOL2013,NO.36,2013:1054-1066.
10.Li Y,Thai M T,Wu W. Wireless Sensor Networks and Applications. Springer Science & Business Media,LLC,2007.
11.Liu X. An Optimal-distance-based Transmission Strategy for Lifetime Maximization of Wireless Senor Networks. IEEE Sensors Journal,VOL.15,NO.6,2015:3484-3491.
12.Li K, Wan J, Yao L. Partial Matrix Completion Algorithm for Efficient Data Gathering in Wireless Senor Networks. IEEE Communications Letters,VOL.19,NO.1,2015:54-57.
13.Md T, Kumudu S. Body Node Coordinator Placement Algorithms for Wireless Body Area Networks. IEEE Internet of Things Journal,VOL.2,NO.1,2015:94-103.
14.Mohammad T,David H,Frigon J.F. Relay Selection in AF Cooperative Systems. IEEE Vehicular technology magazine,December,2012:104-113.
15.Pan R, Chua Dingjuan. An Opportunistic Relay Protocol With Dynamic Scheduling in Wireless Body Area Sensor Network. IEEE Sensors Journal,VOL.15,NO.7,2015:3743-3750.
16.Ricardo C, Flavis M. A Survey on Wireless Body Area Networks: Technologies and Design Challenges. IEEE Communications Surveys & Tutorials,VOL.16,NO.3,2014:1635-1657.
17.Sankar N, Narayan D, Sudip M. Correlation-aware Cross-layer Design for Network Management of Wireless Senor Networks. IET Wireless Sensor Systems,VOL.5,NO.6,2015:263-270.
18.Stojmenovie I. Handbook of Sensor Networks: Algorithms and Architectures. Wiley-Interscience,2005.
19.Samaneh M, Mehran A, Justin L. Wireless Body Area Networks: A Survey. IEEE Communications Surveys & Tutorials,VOL.16,NO.3,2014:1658-1686.
20.Yi Chenfu, Wang Lili. Energy Efficient Transmission Approach for WBAN Based on Threshold Distance. IEEE Sensors Journal,VOL.15,NO.9,2015:5133-5141.
21.Zhang D, Li G, Zhang K, An Energy-balanced Routing Method Based on Forward-aware Factor for Wireless Senor Networks. IEEE Transactions on Industrial Informatics,VOL.10,NO.1,2014:766-773.
22.Hang D, Sun Z, A Multi-utility Framework With Application for Studying Tradeoff Between Utility and Lifetime in Wireless Sensor Networks. IEEE Transactions on Vehicular Technology,VOL.64,NO.10,2015:4701-4711.
光学与通信定位技术部分:
一、中文
1. 普埃克:《数字信号处理》, 电子工业出版社,2007年。
2. 斯托米阿塔伟:《MATLAB编程与工程应用》, 电子工业出版社,2013年。
二、外文
1. Al Jazzar S, Caffery J and Jr. You H R. Scattering-model-based methods for TOA location in NLOS environments. IEEE Transactions on Vehicular Technology, 2007, 56(2): 583-593.
2. Per K. Enge. The global positioning system: signals, measurements, and performance. International Journal of Wireless Information Networks, 1994, 1(2): 83-105.
3. Weiss A J. Direct position determination of narrowband radio frequency transmitters. IEEE Signal Processing Letters, 2004, 11(5): 513-516.
4. Ma C and Klukas R. A nonline-of-sight error mitigation method for TOA measurements. IEEE Transactions on Vehicular Technology, 2007, 56(2): 641-651.
5. Gustafsson F. Mobile positioning using wireless networks: possibilities and fundamental limitations based on available wireless network measurement. IEEE Signal Processing Magazine, 2005, 22(4): 41-53.
6. G. Sun, J. Chen, W. Guo and K. J. R. Liu. Signal processing techniques in network-aided positioning: a survey of state of the art positioning designs. IEEE Signal Process Magzine, 2005, 22: 12-23.
7. S. Gezici, Z. Tian, G. Giananakis, H. Kobayashi etc.. Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks. IEEE Signal Processing Magzine, 2005, 22: 70-84.
8. Sharp I, Yu Kegen. Enhanced least-squares positioning algorithm for indoor positioning. IEEE Transactions on Mobile Computing, 2013, 12(8): 1640-1650.
9. Cheung K W, So H C, Ma W K, et al., Least square algorithms for time-of-arrival based mobile location. IEEE Transactions on Signal Processing, 2004, 52(4): 1121-1130.
10. Yu K G, Dutkiewicz E. NLOS identification and mitigation for mobile tracking. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 1438-1452.
11. Joao Figueiras, Simone Frattasi:《Mobile Positioning and Tracking》, John Wiley & Sons Ltd, 2010.
12. Chan Y T, Hang H Y C, Ching P C. Exact and approximate maximum likelihood localization algorithms. IEEE Transactions on Vehicular Technology, 2006, 55(1): 10-16.
13. Gu Yanying, Lo Anthony, Niemegeers I. A survey of indoor positioning systems for wireless personal networks. IEEE Communications Surveys & Tutorials, 2009, 11(1): 13-32.
14. Christoph Steiner and Armin Wittneben. Efficient training phase for ultrawideband-based location fingerprinting systems. IEEE Transactions on Signal Processing, 2011, 59(12): 6021-6032.
15. Ho-Sik Seok, Kye-Baek Hwang and Byoung-Tak Zhang. Feature relevance network-based transfer learning for indoor location estimation. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 2011, 41(5): 711-719.
16. H. Liu, H. Darabi, P. Banergee and J. Liu. Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 2007, 37(6): 1067-1080.
17. E. Pekalska and R. P. W. Duin. Beyond traditional kernels: Classification in two dissimilarity-based representation spaces. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 2008, 38(6): 729-744.
18. Y. Pan and S. A. Billings. Neighborhood detection for the identification of spatiotemporal systems. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2008, 38(3): 846-854.
19. T. W. S. Chow, W. Piyang and E. W. M. Ma. A new feature selection scheme using a data distribution factor for unsupervised nominal data. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2008, 38(2): 499-509.
20. J. Yin and Q. Yang. Learning adaptive temporal radio maps for signal-strength-based location estimation. IEEE Transactions on Mobile Computer, 2008, 7(7): 869-883.
21. M. Klemm, I. Craddock, J. Leendertz, A. Preece, and R. Benjamin. Radar-based breast cancer detection using a hemispherical antenna array experimental results. IEEE Transactions on Antennas and Propagation, 2009, 57(6): 1692-1704.
22. H. Godrich, A. Haimovich, and R. Blum. Target localization accuracy gain in MIMO radar-based systems. IEEE Transactions on Information Theory, 2010, 56(6): 2783-2803.
23. C. Chen, J. Zhang and R. Fleischer. Distance approximating dimension reduction of Riemannian manifolds. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2010, 40(1): 208-217.
24. C. Figuera, J. L. R. Aivarez, I. M. Jimenez, A. G. Curieses, M. Wilby and J. R. Lopez. Time-space sampling and mobile device calibration for WiFi indoor location systems. IEEE Transactions on Mobile Computing, 2011, 10(7): 913-926.
25. Junyang Shen, A. F. Molisch and J. Salmi. Accurate passive location estimation using TOA measurements. IEEE Transactions on Wireless Communications, 2012, 11(6): 2182-2192.
26. Keyong Li, Dong Guo, Yingwei Lin and I. Ch. Paschalidis. Position and movement detection of wireless sensor network devices relative to a landmark graph. IEEE Transactions on Mobile Computing, 2012, 11(12): 1970-1982.
27. A. K. M. Mahtab Hossain, Yunye Jin, Wee-seng Soh and Hien Nguyen Van. SSD: A Robust RF Location Fingerprint Addressing Mobile Devices’ Heterogeneity. IEEE Transactions on Mobile Computing, 2013, 12(1): 65-77.
28. Lyu-Han Chen, Eric Hsiao-Kuang Wu, Ming-Hui Jin, and Gen-Huey Chen. Intelligent Fusion of Wi-Fi and Inertial Sensor-Based Positioning Systems for Indoor Pedestrian Navigation. IEEE Sensors Journal, 2014, 14(11): 4034-4042.
29. Tan-Jan Ho. Robust Urban Wireless Localization: Synergy Between Data Fusion, Modeling and Intelligent Estimation. IEEE Transactions on Wireless Communications, 2015, 14(2): 685-697.
30. Zhung-Han Wu, Yi Han, Yan Chen and K. J. R. Liu. A Time-Reversal Paradigm for Indoor Positioning System. IEEE Transactions on Vehicular Technology, 2015, 64(4): 1331-1339.
大气光学与红外通信技术部分:
一、中文
1. Manfred等著,李正强等译:《大气辐射传输原理》,高等教育出版社,2014年.
2. 饶瑞中:《现代大气光学》,科学出版社,2012年.
3. 盛培轩:《大气物理学》,北京大学出版社,2003年.
4. 张华:《大气辐射传输模式》,气象出版社,2016年.
5.鲁先洋.典型区域大气气溶胶参数特性分析及其测量方法研究[D]. 中国科学技术大学,2017. 
6.贾臣.基于多波段气溶胶光学厚度的气溶胶类型快速确定方法研究[D].山东科技大学,2017. 
7.姚兰.山东典型地区大气PM2.5化学组成、来源及二次生成研究[D].山东大学,2017.
8.耿蒙.典型地区大气气溶胶谱分布和折射率特征研究[D]. 中国科学技术大学,2017.
9.张小林,黄印博,饶瑞中.一种内混合气溶胶粒子模型光散射的等效性[J].光学学报,2012.
10.徐博,黄印博,范承玉,乔春红.吸湿性均匀混合气溶胶粒子等效吸收系数计算分析[J].光学学报,2013.
11.陈然,江洪,肖钟湧,余树全,焦荔,洪盛茂.地基遥感监测杭州地区气溶胶光学特性及大气环境变化[J].环境科学研究,2008(03):22-26.
12.王宏斌,张志薇,张镭,吴泓,周林义,祖繁.中国3个AERONET站点气溶胶大小的识别及特征分析[J].中国环境科学,2015,35(04):995-1003.
13.刘贞,郑有飞,刘建军,解孟其.基于A-train卫星对中国北方地区气溶胶分布的研究[J].中国环境科学,2015,35(10):2891-2898.
14.吴立新,吕鑫,秦凯,白杨,李佳乐,任传斌,张媛媛.基于太阳光度计地基观测的徐州气溶胶光学特性变化分析[J].科学通报,2016,61(20):2287-2298.
15. 陈良富,李莘莘,王中挺等.气溶胶遥感定量反演研究与应用[M].北京:科学出版社,2011:10-17.
二、外文
1.Alain Hache,Phuong Anh Do,Stefano Bonora. Surface heating by optical beams and application to mid-infrared imaging. Applied Optics, 2012,51(27): 6578-6585.
2.Hongyuan Wang, Wei Zhang, Fugang Wang. Infrared imaging characteristics of space-based targets based on bidirectional reflection distribution fonction. Infrared Physics and Technology, 2012,55(4):368-376.
3.Hubert, G. Bezerra, F. Nicot, J.-M. Atmospheric Radiation Environment Effects on Electronic Balloon Board Observed During Polar Vortex and Equatorial Operational Campaigns. Nuclear Science, IEEE 2014, 61(4): 1703-1709.
4.Qian Feng, Hsu, N.C. Ping Yang, Si-Chee Tsay Effect of Thin Cirrus Clouds on Dust Optical Depth Retrievals From MODIS Observations.Geoscience and Remote Sensing, IEEE Transactions on  2011 , 49(8) :2819 – 2827.
5.Xuan Feng,Feng Sheng Zhao,Wen Hua Gao.Effect of the improvement of the HITRAN database on the radiative transfer calculation.Journal of Quantitative Spectroscopy and Radiative Transfer 2007 108(2):308-318
6.G. López, L.A. Basterra, L. Acuña, et al. Determination of the Emissivity of Wood for Inspection by Infrared Thermography. J Nondestruct Eval 2013, 32:172–176.
7.José A. Sobrino, Juan C. Jiménez-Muñoz. Minimum configuration of thermal infrared bands for land surface temperature and emissivity estimation in the context of potential future missions.Remote Sensing of Environment.2014, 148:158-167.
8.Carlo Purpura, E. Trifoni, Marilena Musto ,et al. Methodology for spectral emissivity measurement by means of single color pyrometer. Measurement. 2016.
9.Aleksandar Saljnikov, Mirko Komatina, Vasilije Manovic. Investigation on thermal radiation spectra of coal ash deposits. International Journal of Heat and Mass Transfer.2009, 52: 2871-2884.
10.Yuki Kameya, Katsunori Hanamura. Enhancement of solar radiation absorption using nanoparticle suspension. Solar Energy.2011,85: 299-307.
11.Takamura, T. Miyamoto, N. Ohno. Thermal radiation characteristics and direct evidence of tungsten cooling on the way to nanostructure formation on its surface.Journal of Nuclear Materials.2013, 438: S814-S817.
12.Wilson J, Patwari N. See through walls: Motion tracking using variance-based radio tomography networks[J]. IEEE Transactions on Mobile Computing, 2011, 10(5): 612-621.
13.A. Masoumi,H.R. Khalesifard,A. Bayat,R. Moradhaseli. Retrieval of aerosol optical and physical properties from ground-based measurements for Zanjan, a city in Northwest Iran[J]. Atmospheric Research,2013,120-121.
14.Adarsh Kumar. Long term (2003–2012) spatio-temporal MODIS (Terra/Aqua level 3) derived climatic variations of aerosol optical depth and cloud properties over a semi arid urban tropical region of Northern India[J]. Atmospheric Environment,2014,83.
15.Muhammad Zeeshan,N.T. Kim Oanh. Assessment of the relationship between satellite AOD and ground PM 10 measurement data considering synoptic meteorological patterns and Lidar data[J]. Science of the Total Environment,2014,473-474.
16.Yingjie Li,Yong Xue,Gerrit de Leeuw,Chi Li,Leiku Yang,Tingting Hou,Farhi Marir. Retrieval of aerosol optical depth and surface reflectance over land from NOAA AVHRR data[J]. Remote Sensing of Environment,2013,133.
17.Jinping Tang,Pucai Wang,Loretta J. Mickley,Xiangao Xia,Hong Liao,Xu Yue,Li Sun,Junrong Xia. Positive relationship between liquid cloud droplet effective radius and aerosol optical depth over Eastern China from satellite data[J]. Atmospheric Environment,2014,84.
18.WANG Han,SUN Xiaobing,SUN Bin,LIANG Tianqua,LI Cuili,HONG Jin.Retrieval of Aerosol Optical Properties over a Vegetation Surface Using Multi-angular, Multi-spectral, and Polarized Data[J].Advances in Atmospheric Sciences,2014,31(4):879-887.
19.Zhao H J, Che H Z, Zhang X Y,et al., 2013. Characteristics of visibility and particulate matter (PM) in an urban area of Northeast China. Atmospheric Pollution Research 4, 427-434.
20.Xin J, Zhang Q, Wang L, et al., 2014. The empirical relationship between the PM2.5concentration and aerosol optical depth over the background of North China from 2009 to 2011.Atmospheric Research 138, 179-188.
光学与信息处理部分
一、中文
1. 史蒂芬·山德:《无线通信系统中的定位技术与应用》,机械工业出版社,2016年。
2. 田中成、刘聪锋:《无源定位技术》,国防工业出版社,2015年。
3. 杨恒:《定位技术》,电子工业出版社,2013年。
4. 谭浩强:《C++面向对象程序设计(第2版)》,清华大学出版社,2014年。
5. 谭浩强:《C++面向对象程序设计题解与上机指导(第2版)》,清华大学出版社,2014年。
6. 育坚:《Visual C++面向对象编程(第3版)》,清华大学出版社,2013年。
7. 黄维通、贾续涵:《Visual C++面向对象与可视化程序设计(第3版)》,清华大学出版社,2011年。
二、外文
1. Wilson J, Patwari N. Radio tomographic imaging with wireless networks[J]. IEEE Transactions on Mobile Computing, 2010, 9(5): 621-632.
2. Wilson J, Patwari N. See through walls: Motion tracking using variance-based radio tomography networks[J]. IEEE Transactions on Mobile Computing, 2011, 10(5): 612-621.
3. Wilson J, Patwari N. A fade level skew-laplace signal strength model for device-free localization with wireless networks[J]. IEEE Transactions on Mobile Computing, 2012, 11(6): 947-958.
4. Zhao Y, Patwari N. Robust estimators for variance-based device-free localization and tracking[J]. IEEE Transactions on Mobile Computing, 2015, 14(1): 2116-2129.
5. Youssef M, Mah M, Agrawala A. Challenges: device-free passive localization for wireless environments[C]. In Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking, Montréal, 2007: 222-229.
6.Kosba A E, Abdelkader A, Youssef M. Analysis of a device-free passive tracking system intypical wireless environments[C]. International Conference on New Technologies Mobility & Security, IEEE Press, 2009: 1-5.
8. Seifeldin M, Youssef M. A deterministic large-scale device-free passive localization system for wireless environments[C]. Proceedings of the 3rd International Conference on Pervasive Technologies Related to Assistive Environments, ACM, 2010: 1321-1334.
9. Eleryan A, Elsabagh M, Youssef M. Synthetic generation of radio maps for device-free passive localization[C]. In Proceedings of Global Telecommunication Conference, Houston, 2011: 1-5.
10 Seifeldin M, Saeed A, Kosba A, et al. Nuzzer: A large-scale device-free passive localization system for wireless environments[J]. IEEE Transactions on Mobile Computing, 2013, 12(7): 1321-1334.
11 Saeed A, Kosba A E, Youssef M. Ichnaea: A low-overhead robust WLAN device-free passive localization system[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(1): 5-15.
12 Zhang D, Ma J, Chen Q, et al. An RF-based system for tracking transceiver- free objects[C].In Proceedings of 5th IEEE International Conference on Pervasive Computing and Communications, New York, 2007: 135-144.
13. Zhang D, Ni L M. Dynamic clustering for tracking multiple transceiver-free objects[C]. In Proceedings of 7th IEEE International Conference on Pervasive Computing and Communications, Galveston, 2009: 1-8.
14. Zhang D, Liu Y, Ni L M. RASS: A real-time, accurate and scalable system for tracking transceiver-free objects[C]. In Proceedings of 9th IEEE International Conference on Pervasive Computing and Communications, Seattle, 2011: 197-204.
15. Zhang D, Jiang X, Ni L M. Double Free: Measurement-free localization for transceiver-free object[C]. International Conference on Parallel Processing, IEEE, 2014: 529-538.
16. Zheng W, Zhang D. HandButton: Gesture recognition of transceiver-free object by using wireless networks[C]. IEEE International Conference on Communications, IEEE, 2015: 6640-6645.
17. Wang J, Gao Q, Wang H, et al. Time-of-flight-based radio tomography for device free localization[J]. IEEE Transactions on Wireless Communications, 2013, 12(5): 2355-2365.
18. Wang J, Gao Q, Yu Y, et al. Robust device free wireless localization based on differential RSS measurements[J]. IEEE Transactions on Industrial Electronics, 2013, 60(12): 5943-5952.
19. Wang J, Gao Q, Cheng P, et al. Lightweight robust device-free localization in wireless networks[J]. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5681-5689.
20. Wang J, Gao Q, Wang H, et al. Device-free localization with multidimensional wireless link information[J]. IEEE Transactions on Vehicular Technology, 2015, 64(1): 356-366.
21. Yang Z, Huang K, Guo X, et al. A real-time device-free localization system using correlated RSS measurements[J]. EURASIP Journal on Wireless Communications and Networking, 2013, 186: 12 pages.
22. Guo Y, Huang K, Jiang N, et al. An exponential-rayleigh model for RSS-based device-free localization and tracking[J]. IEEE Transactions on Mobile Computing, 2015, 14(3): 484-494.
23 Wang J, Chen X, Fang D, et al. Transferring compressive-sensing-based device-free localization across target diversity[J]. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2397-2409.
24. Bocca M, Kaltiokallio O, Patwari N, et al. Multiple target tracking with RF sensor networks[J]. IEEE Transactions on Mobile Computing, 2014, 13(8): 1787-1800.
25. Xu C, Firner B, Moore R, et al. SCPL: Indoor device-free multi-subject counting and localization using radio signal strength[C]. 2013 ACM/IEEE International Conference on Information Processing in Sensor Networks, IEEE, 2013: 79-90.
26. Thouin F, Nannuru S, Coates M. Multi-target tracking for measurement models with additive contributions[C]. 2011 Proceedings of the 14th International Conference on Information Fusion, IEEE, 2011: 1-8.
27. Nannuru S, Li Y, Zeng Y, et al. Radio frequency tomography for passive indoor multi-target tracking[J]. IEEE Transactions on Mobile Computing, 2013, 12(12): 2322-2333.
28. Zhang D, Lu K, Mao R, et al. Fine-grained localization for multiple transceiver-free objects by using RF-based technologies[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(6): 1464-1475.
29. Sabek I, Youssef M, Vasilakos A V. ACE: An accurate and efficient multi-entity device-free WLAN localization system[J]. IEEE Transactions on Mobile Computing, 2015, 14(2): 261-273.
光电检测与数字图像处理部分
一、中文
1. A.V奥本海姆等著.黄建国等译:《离散时间信号处理》,科学出版社,1998年。
2. 胡广书:《数字信号处理—理论、算法与实现》,清华大学出版社,2004年。
3. 郑南宁:《数字信号处理》,西安交通大学出版社,1996年。
4. 全书海:《数字信号处理》,武汉工学院教材出版中心,1994年。
5. 丁玉美等:《数字信号处理》,西安电子科技大学出版社,2004年。
6. 高西全等:《数字信号处理学习指导》,西安电子科技大学出版社,2004年。
7. 程佩青:《数字信号处理教程》,清华大学出版社,2007年。
8. 刘益成,孙祥娥:《数字信号处理》,电子工业出版社,2005年。
9.Kenneth R. Castleman,朱志刚等译:《数字图像处理》, 电子工业出版社, 2011年。
10. RAFAEL C.GONZALEZ, 阮秋琦等译:《数字图像处理(第三版)》,电子工业出版社, 2011年。
11.晏磊 等:《数字成像基础及系统技术》,电子工业出版社,2007年。
二、外文
1. Zhe Chen, Shuwen Wang, and Fuliang Yin, A General Design Method for FIR Compensation Filters in Δ-ΣADCs, IEEE Signal Processing Magazine.2016,33(4):96-102.
2. F. Ahmad, B. Jokanovic, M. G. Amin, and Y. D. Zhang, Multi-window time–frequency signature reconstruction from undersampled continuous-wave radar measurements for fall detection, IET Radar Sonar Navig. 2015,9(2): 173–183.
3. K. Ozcan, A. K. Mahabalagiri, M. Casares, and S. Velipasalar, Automatic fall detection and activity classification by a wearable embedded smart camera, IEEE J. Emerg. Sel. Top. Circuits Syst. 2013,3(2):125–136.
4. B. Silva, J. Rodrigues, T. Simoes, S. Sendra, and J. Lloret, An ambient assisted living framework for mobile environments, in Proc. IEEE-EMBS Int. Conf. Biomedical Health Informatics (BHI). 2014,5(3): 448–451.
5. Stanislav Pyatykh, Jürgen Hesser,Lei Zheng.Image noise level estimation by principal component analysis. IEEE Transactions on Image Processing.2013, 22(2):687-698.
6. Khosro Bahrami, Alex C. Kot.A fast approach for no-reference image sharpness assessment based on maximum local variation.IEEE Signal Processing Letters.2014, 21(6):751-755.
7. Weilong Hou,Xinbo Gao,Blind Image Quality Assessment via Deep Learning ,IEEE Transactions on Neural Networks And Learning Systems.2014,26(6):1275-1286.
8. Y. Zhang et al., Weakly supervised fine-grained categorization with part-based image representation, IEEE Trans. Image Process.2016, 25(4):1713–1725.
9. Jia,Zhen-Yuan,Wang Ling-Li,Liu Wei,LIU Yang,Fan Chao-nan,Cross-Rereneced Image Quality Assessment For Laser Stripes,Guangxue Jingmi Gongcheng/Optics and Precision Engineering. 2015,23(11):3041-3050.
10. Xiang Zhang,Shiqi Wang,Ke Gu,Tingting Jiang,Siwei Ma and Wen Gao,Sparse Structural Similarity for Objective Image Quality Assessment,IEEE International Conference on Systems,Man,and Cybernetics(SMC2015).2016,32(8):1561-1566.
11. Feng Qi,Debin Zhao,Xiaopeng Fan,Tingting Jiang,Stereoscopic Video Quality Assessment Based on Visual Attention and Just-Noticeable Difference Models,Signal,Image and Video Processing.2016,10(4):737-744.
12. Seghir,Zianou Ahmed,Hachouf,Fella,Full-Reference Image Quality Assessment Measure Based on Color Distortion,IFIP Advances in Information and Communication Technology.2015,456:66-77.
13. Jang,Hyesung,Kim,Choon-Woo,Perceived Image Quality Assessment For Color Images on Mobile Displays,Proceedings of SPIE-The Ingernational Society for Optical Engineering. 2015,9395:93950U-93950U-8.
14. Gao Fei,Yu Jun,Biologically Inspired Image Quality Assessment, Signal Processing. 2016,124:210-219.
15. Das Dibyasundar,Nayak Ajit Kumar,Investigation of Full-Reference Image Quality Assessment,Advances in Intelligent Systems and Computing.2015,309(2):449-456.
16. Jinjian Wu, Weisi Lin, Guangming Shi, et al. Perceptual quality metric with internal generative mechanism. IEEE Transactions on Image Processing.2013, 22(1):43-54.
17. Wufeng Xue, Lei Zhang, Xuanqin Mou, et al. Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE Transactions on Image Processing .2014,23(2): 684-695.
18. Yuan yuan,Guo Qun,Lu Xiaoqiang,Image Quality Assessment:A Sparse Learning Way,Neurocomputing.2015,159(1):227-241.
19. Alhakim Rshdee,Tchendjou Ghislain Takam,Simeu Emmanuel,Lebowsky Fritz,Image Quality Assessment Using nonlinear Learning,International Conference on Microelectronics.2016:5-8.
20. Hou Weilong,Gao Xinbo,Saliency-Guided Deep Framework for Image Quality Assessment ,IEEE Multimedia.2015,(22)2:46-55.
 
 

上一篇:学科教学(物理)全日制专业学位研究生培养方案(2018)
下一篇:光学专业博士培养方案(2018)